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RESUMO 

 

As classes de recursos minerais de uma classificação refletem o grau de confiança do 

conhecimento do depósito mineral, sendo que este grau de confiança pode ser obtido através da 

incerteza associada à quantificação dos teores do depósito. O objetivo deste estudo é classificar 

os recursos de ferro da Mina de Capanema, baseado na incerteza associada a simulação 

estocástica por bandas rotativas do ferro e de dois de seus contaminantes, a alumina e o fósforo. 

A Mina de Capanema corresponde a um depósito do tipo formação ferrífera bandada, que 

sofreu distintos eventos deformacionais e está localizada entre o município de Santa Bárbara e 

Itabirito, no Quadrilátero Ferrífero, estado de Minas Gerais. 

Para quantificar as incertezas foram utilizados 100 cenários para cada variável analisada, 

com isso foi possível quantificar a incerteza da simulação através do intervalo de confiança da 

média padronizado. Com a comparação das incertezas das três variáveis analisadas, concluiu-

se que como a incerteza é diretamente relacionada ao nível de variabilidade que variável 

apresenta, sua utilização em depósitos com baixa variabilidade pode não ser adequado. 

Com os resultados obtidos neste trabalho, pode-se afirmar que para depósitos pouco 

heterogêneos como o da Mina de Capanema, não é aconselhável que a classificação seja 

realizada através da incerteza quantificada pelo intervalo de confiança da média, visto que 

praticamente a totalidade dos blocos foram classificados como medido, tal fato não é factível, 

pois espera-se que nas bordas de um depósito e lugares onde a amostragem não seja 

representativa tenha a presença de blocos classificados como indicado e inferido. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
 

 

ABSTRACT 

 

The types of  the mineral resources in a classification reflect the degree of confidence of 

the knowledge of the mineral deposit, and this degree of confidence can be obtained through the 

uncertainty associated with the quantification of deposit contents. The objective of this study is to 

classify the iron resources of the Capanema Mine based on the uncertainty associated with 

stochastic simulation by turning bands of iron and two of its contaminants, aluminum and 

phosphorus. 

 The Capanema Mine corresponds a banded iron formation deposit, which suffered 

different deformation events and is located between the cities of Santa Bárbara and Itabirito, in 

the Quadrilátero Ferrífero, state of Minas Gerais. 

 To quantify the uncertainties were 100 scenarios used for each variable analysis, with 

this it was possible to quantify the uncertainty of the simulation through the confidence interval of 

the mean. By comparing the uncertainties of the three analyzed variables, it was concluded that 

as the uncertainty is directly related to the level of variability that the variable presents, its use in 

deposits with low variability may not be adequate. 

 The results obtained in this work, it can be stated that for non-heterogeneous deposits 

such as the Capanema Mine are not advisable to classify the uncertainty quantified by the 

confidence interval of the mean. All the blocks were classified as measured, this fact is not 

feasible, because it is expected that on the edges of a deposit and places where the sampling is 

not representative has the presence of blocks classified as indicated and inferred. 
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1. INTRODUÇÃO 

Diariamente ações do setor mineral são negociadas nas principais bolsas de valores 

então, com a finalidade de atrair investidores e evitar fraudes, as empresas do setor de mineração 

divulgam declarações públicas com informações oficiais sobre a quantidade estimada de 

recursos e reservas de um depósito (Rossi e Deutsch, 2014). Em cada país tais declarações 

seguem padrões estabelecidos por códigos, sendo os principais o JORC, NI 43-101 e SAMREC 

(Rossi e Deutsch, 2014). 

         Esses códigos determinam que as declarações públicas contenham a classificação de 

recursos, que deve ser realizada de acordo com o conhecimento e confiança dos dados 

geológicos obtidos, ou seja, as classes de recursos irão refletir o quanto o teor e a tonelagem do 

recurso estimado são confiáveis (CBRR, 2016).  A incerteza associada à estimativa é uma forma 

de determinar se o teor e a tonelagem do recurso estimado são confiáveis, ou seja, quanto menor 

a incerteza mais confiável é a declaração de recursos. Nas declarações públicas deve-se 

apresentar uma discussão das incertezas dos recursos, assim como elas devem ser 

consideradas para determinar as classes de recursos (CBRR, 2016).   

         Todas as estimativas de recursos apresentam incerteza associada devido a diversos 

fatores como amostras não representativas do depósito, imprecisão dos dados, falta de dados, 

incerteza dos modelos geológicos, aplicação incorreta dos métodos matemáticos entre outros 

(Rossi e Deutsch, 2014). 

         Uma forma de obter um modelo de incerteza do depósito mineral é pela simulação 

estocástica, pois nela vários modelos equiprováveis da realidade são gerados, sendo que a 

incerteza é obtida através da dispersão dos diversos modelos (Abzalov, 2016). Porém as 

simulações estocásticas não abrangem todas as fontes de incerteza a que as estimativas estão 

sujeitas (Rossi e Deutsch). 

         Neste trabalho, a classificação de recursos de ferro da Mina de Capanema será realizada 

com base na incerteza da simulação estocástica por bandas rotativas do ferro e de dois dos seus 

contaminantes, o fósforo e a alumina, sendo que a quantificação da incerteza dos modelos 

gerados será realizada pelo intervalo de confiança da média 
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2. OBJETIVOS E JUSTIFICATIVA 

 O objetivo deste trabalho é a quantificação dos teores de Fe, P e Al2O3 e correspondente 

incerteza para a classificação dos blocos em recursos inferidos, indicados e medidos. A incerteza 

será quantificada pelo intervalo de confiança da média, calculado a partir do desvio padrão da 

simulação estocástica por bandas rotativas. 

 Justifica-se a classificação dos recursos de ferro a partir das incertezas do próprio e de 

dois de seus contaminantes, porque como recurso é definido como ocorrência/concentração de 

material sólido com perspectiva de extração econômica (CBRR, 2016) e como teores altos de 

contaminantes podem afetar esta perspectiva, é sensato pensar na classificação de recursos 

minerais considerando-se também os contaminantes.  

3. LOCALIZAÇÃO E VIA DE ACESSO 

 A Mina de Capanema está localizada entre os municípios de Santa Bárbara e Itabirito, na 

região do Quadrilátero Ferrífero (Figura 1). O acesso da mina a partir de Belo Horizonte ocorre 

pela BR-040 até o trevo para Ouro Preto e em seguida através da rodovia BR-356 até chegar a 

Itabirito, onde há o trevo de acesso à Capanema.  

 

Figura 1- Mapa do Quadrilátero Ferrífero com destaque em vermelho da localização da Mina de Capanema. Retirado 

de Oliveira Jr. (2006). 



 

3 
 

4. TRABALHOS PRÉVIOS  

4.1. Geologia Regional 

O Quadrilátero Ferrífero situa-se no extremo sul do Cráton do São Francisco, que 

compreende um núcleo cratônico cercado por cinturões tectônicos relacionados à orogênese 

Brasiliana (Almeida, 1977).  

 A litoestratigrafia do Quadrilátero Ferrífero, da base para o topo, é composta por: 

• Embasamento cristalino: unidade constituída por rochas arqueanas que ocorrem em 

forma de domos (Rossi, 2014). Esta unidade é composta por gnaisses de composição 

TTG (Tonalito-Trondhjemito-Granodiorito) (Noce, 1995), metamorfizados em fácies 

anfibolito médio a superior (Rossi, 2014). Nesta unidade ocorrem intrusões anfibolíticas e 

de granitóides potássicos (Lana et al., 2013). 

• Supergrupo Rio das Velhas: compreende uma sequência do tipo Greenstone Belt de idade 

arqueana (Zucchetti et al., 2000). A sequência é composta por rochas máficas e 

ultramáficas, rochas vulcanoclásticas e rochas sedimentares (Zucchetti et al., 2000). O 

Supergrupo Rio das Velhas tem paragêneses metamórfica de fácies   xisto verde alto a 

anfibolito (Rossi, 2014).  O supergrupo Rio das Velhas é dividido estratigraficamente, da 

base para o topo, em: 

• Grupo Nova Lima: caracterizado por komatiítos, formações ferríferas bandadas, 

pelitos, metagravaucas e arenitos (Baltazar e Zucchetti, 2007). 

• Grupo Maquiné:  constituído por quartzitos, metarenitos, xistos, filitos e 

metaconglomerados (Angeli, 2015). 

• Supergrupo Minas: corresponde a uma sequência metassedimentar de idade 

paleoproterozóica (Alkmim e Marshak, 1998). Em síntese,o supergrupo é formado por 

quartzitos, metaconglomerados, metapelitos e formações ferríferas bandadas (Rosière e 

Chemale Jr, 2000). As rochas desta unidade estão metamorfizadas na fácies xisto-verde 

alto a anfibolito (Rossi, 2014). O Supergrupo Minas é dividido, da base para o topo, em: 

• Grupo Tamanduá: composto por quartzitos, conglomerados, xistos e filitos (Dorr, 

1969). 

• Grupo Caraça: formado por conglomerados, quartzitos e metapelitos (Rosière e 

Chemale Jr, 2000). 

• Grupo Itabira: constituído por itabiritos, dolomitos ferruginosos e filitos hematíticos 

(Rosière e Chemale Jr, 2000). 

• Grupo Piracicaba: composto por filitos carbonáticos, filitos ferruginosos, dolomitos, 

mármores estromatolíticos, formações ferríferas bandadas e   metarenitos 

ferruginosos intercalados com filitos (Rosière e Chemale Jr, 2000).  
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• Grupo Sabará: compreende metagrauvacas, metadiamictitos, tufos e 

metavulcanitos ácidos a intermediários associados a filitos carbonosos e 

formações ferríferas bandadas (Rosière e Chemale, 2000). 

• Grupo Itacolomi: unidade mesozóica (Noce, 1995), constituída por arenitos, 

metaconglomerados e filitos (Dorr, 1969). 

 Segundo Chemale Jr et al. (1994) a evolução tectônica do Quadrilátero Ferrífero se deu 

por meio de dois eventos deformacionais principais, o primeiro ocorreu durante o Orogênese 

Transamazônica (2,1 - 2,0 Ga) que resultou na forma dômica do embasamento cristalino e 

produziu sinclinais regionais nas supracrustais. O segundo evento de idade Brasiliana (0,8-0,6 

Ga) ocasionou a inversão, amplificação, translação e rotação dos sinclinais. 

A Figura 2 corresponde ao mapa geológico do Quadrilátero Ferrífero. 

 
Figura 2- Mapa Geológico do Quadrilátero Ferrífero. Retirado de Farina et al (2016). 
 

4.2. Geologia Local 

A mina de Capanema está situada no flanco sudeste do Sinclinal de Ouro Fino (Fonseca, 

2014), uma megaestrutura do Quadrilátero Ferrífero que sofreu distintos eventos deformacionais 

(Franco e Endo, 2004). 

Segundo Fonseca (2014), a litoestratigrafia da mina é constituída, da base para o topo, 

por: quartzitos pertencentes a Formação Moeda e Maquiné, filitos pertencentes a Formação 
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Batatal, itabiritos compactos, itabiritos silicosos e friáveis sobrepostos por itabiritos goethíticos e 

anfibolíticos da Formação Cauê. Cortando essas litologias ocorrem diques de rochas máficas. 

O minério de ferro da Mina de Capanema está inserido na Formação Cauê (Fonseca, 

2014), que corresponde a uma formação de idade proterozóica constituída por itabiritos, itabiritos 

dolomíticos e itabiritos anfibolíticos (Dorr, 1969). O minério da Mina tem como mineral de minério 

a Hematita, que ocorre em camadas contínuas ou em lentes com espessura variando entre 10 a 

30 m (Fonseca, 2014). A hematita quando ocorre próximo à superfície apresenta maior teor de 

contaminantes, como o fósforo e alumina, e menor teor de ferro (Fonseca, 2014). 

Os itabiritos da mina de Capanema podem ser divididos em três tipos em relação à 

quantidade de ferro (Fonseca, 2014): 

• Itabiritos pobres: com teores de ferro inferior a 50%; 

• Itabiritos ricos: com teores de de ferro superiores a 50%; 

• Itabiritos goethíticos ou anfibolíticos: com teores de ferro entre 55% a 60%, porém 

com altos teores de contaminantes. Esse tipo de itabirito ocorre sobre os itabiritos 

ricos. 

Segundo Fonseca (2014), a canga da mina é formada por laterita constituída por grande 

quantidade de goethitas e limonitas (hidróxidos de ferro) e com altos teores de contaminantes, 

como fósforo e alumina.  

 

4.3. Regularização das amostras 

 Geralmente, as amostras apresentam diferentes tamanhos ao longo do furo de sonda, 

porém para realizar a estimativa é necessário que as amostras apresentem o mesmo suporte 

amostral, deste modo há a necessidade da regularização das amostras (Abzalov, 2016).  

 Para lavra a céu aberto, a regularização das amostras é realizada de modo que as 

amostras tenham comprimentos compatíveis com altura da bancada (Yamamoto e Rocha, 2001; 

Rossi e Deutsch, 2014), com finalidade de adequar a escala de amostragem à escala de trabalho 

(Yamamoto e Rocha, 2001).   

 Ainda segundo Yamamoto e Rocha (2001), a regularização das amostras é realizada 

conforme: 

𝑡𝑐 =
∑ 𝑡𝑖

𝑛
𝑖=1 𝑒𝑖

∑ 𝑒𝑖
𝑛
𝑖=1

 

                                                                                                                                                                                           (1)                                                       

Onde 𝑡𝑐 é o teor composto para o intervalo de trabalho, 𝑡𝑖 é o teor do i-ésimo trecho amostral e 

𝑒𝑖 a espessura do i-ésimo trecho. 
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4.4. Análise Estatística 

 Através da análise estatística é possível resumir os dados, analisar a variável de interesse 

e o depósito mineral e identificar valores atípicos (outliers), com isso, permite um melhor 

entendimento dos dados (Rossi e Deutsch, 2014). Nessa análise são calculadas as medidas de 

tendência central, como média, mediana e moda; medidas de dispersão, como variância, desvio 

padrão e coeficiente de variação e; na representação gráfica da variável, através do histograma 

(Yamamoto et al., 2001). 

 

4.5. Análise Geoestatística 

Para aplicação dos métodos geoestatísticos é necessário que as variáveis sejam 

regionalizadas, isto é, uma função que define o valor da variável em um ponto no espaço 

(Abzalov, 2016). Segundo Matheron (1963), a variável regionalizada apresenta as seguintes 

características qualitativas: 

• Localização: a variável possui uma posição no espaço, sendo que a variável pode variar 

dentro do campo geométrico regionalizado, ou seja, o depósito.    

• Suporte: corresponde ao volume, a forma, tamanho e orientação da amostra.  

• Continuidade: a variável deve apresentar continuidade espacial, ou seja, amostras mais 

distantes apresentam maior variância espacial do que amostras mais próximas. 

• Anisotropia: refere-se a diferentes comportamentos espaciais para diferentes direções. 

Outro conceito importante relacionado a variável regionalizada refere-se a hipótese 

intrínseca, que assume que a variância espacial entre duas amostras é a mesma em todo o 

domínio e que seu valor só depende da distância e orientação das amostras. O comportamento 

espacial pode ser quantificado pela função semivariograma (Yamamoto, 2001), que pode ser 

descrita como (Abzalov, 2016): 

                                                  𝛾(ℎ) =
1

2𝑁
∑ [𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ)]2𝑁

𝑖=1                                          (2)                                        

onde 𝛾(ℎ) é a variância espacial, 𝑁 é o número de pares de pontos separados por uma distância 

ℎ, 𝑧(𝑥𝑖) é o valor da variável regionalizada no ponto 𝑥, 𝑧(𝑥𝑖 + ℎ) é o valor da variável regionalizada 

no ponto 𝑥 + ℎ. 

 Através das propriedades de um semivariograma é possível entender o comportamento 

espacial da variável regionalizada (Yamamoto, 2001), sendo que suas principais características 

são: 

• amplitude, refere-se a distância máxima onde as amostras apresentam correlação 

espacial (Abzalov, 2016); 

• efeito pepita, é o valor da variância espacial próximo a origem (Abzalov, 2016); 

• patamar, o valor da variância espacial onde o variograma estabiliza (Abzalov, 2016);  
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• variância espacial é dada pela diferença entre o valor do patamar e do efeito pepita 

(Yamamoto, 2001). 

Representa-se na Figura 3 um semivariograma típico com patamar e suas características. 

 
Figura 3- Semivariograma e suas propriedades. Retirado de Abzalov (2016). 

 
Através do cálculo do variograma em diferentes direções é possível identificar se o 

domínio é isotrópico ou anisotrópico, isto é, quando a variável apresenta o mesmo 

comportamento espacial em diferentes direções, então o domínio é isotrópico, porém quando o 

comportamento espacial varia para diferentes direções, nesse caso o domínio é anisotrópico 

(Yamamoto e Landim, 2013). Para reconhecer anisotropia é necessário fazer a análise 

exploratória que consiste em calcular o variograma em quatros direções (0°, 45°, 90°, 135°) 

quando o domínio é 2D e em cinco direções (0°/0°, 45°/0°, 90°/0°, 135°/0° e 0°/90°) para domínios 

3D. 

Segundo Yamamoto e Landim (2013), os tipos de anisotropias existentes são: 

• Geométrica: quando o variograma apresenta diferentes amplitudes para diferentes 

direções, mas com único patamar; 

• Zonal: quando o variograma apresenta diferentes patamares para diferentes direções, 

porém com a mesma amplitude; 

• Mista: quando o variograma apresenta amplitudes e patamares diferentes para diferentes 

direções. 

Retrata-se na Figura 4 os diferentes tipos de anisotropia.  

 

 Figura 4- Representação das anisotropias existentes. A) Variograma com anisotropia geométrica. B)Variograma com 
anisotropia zonal. C) Variograma com anisotropia mista. Retirado de Yamamoto (2001). 
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O variograma experimental é uma função discreta, pois representa o valor da variância 

espacial apenas para determinadas distâncias (Abzalov, 2016). Porém para realizar estimativa 

ou a simulação, é necessário conhecer o valor da variância espacial para todas distâncias e para 

todas direções, assim surge à necessidade de ajustar o variograma, ou seja, ajustar uma função 

matemática contínua que descreva o comportamento espacial da variável (Rossi e Deutsch, 

2014). Retrata-se na Figura 5 a forma do variograma de acordo com a função utilizada para o 

ajuste. Segundo Abzalov (2016), os modelos de variogramas mais usados, são: 

• Esférico:        𝛾(ℎ) = 𝐶0 + 𝐶 [
3|ℎ|

𝑎
+

|ℎ|3

2𝑎3]   quando 0 ≤ |ℎ| ≤ 𝑎                                                 

                
                     𝛾(ℎ) = 𝐶0 + 𝐶                            quando |ℎ| > 𝑎                                                                (3) 

 

• Exponencial: 𝛾(ℎ) = 𝐶0 + 𝐶 [1 − 𝑒𝑥𝑝
−|ℎ|

𝑎 ]                                                                                 (4) 

 

• Gaussiano:    𝛾(ℎ) = 𝐶0 + 𝐶 [1 − 𝑒𝑥𝑝
−[ℎ]2

𝑎2 ]                                                                          (5) 

 
sendo 𝐶0 o efeito pepita, 𝐶 a variância espacial (diferença entre patamar e efeito pepita), 𝑎 

corresponde a amplitude e ℎ é a distância de separação entre pontos. 

 
Figura 5- Representa os principais modelos de semivariograma. A) Modelo Esférico. B) Modelo Exponencial. 
C)Modelo Gaussiano. Retirado de Rossi e Deutsch (2014). 

 
 Segundo Yamamoto (2001), a definição dos parâmetros de vizinhança é de grande 

importância para a realização da krigagem e da simulação, pois é a partir desses parâmetros que 

ocorre a escolha de amostras que serão utilizadas para estimar ou simular um ponto ou bloco 

não amostrado. A definição dos parâmetros de vizinhança deve garantir uma boa 

representatividade espacial para evitar que ocorra a escolha de amostras agrupadas em uma 

única região.  

 Os critérios de seleção consistem em dividir a região do ponto que será estimado em 

quatro ou oito setores, ou seja, por quadrante ou octante, dessa forma as amostras escolhidas 

estarão mais bem distribuídas espacialmente (Yamamoto, 2001). Na Figura 6A, mostra-se a 

seleção de amostras usando somente o critério da distância, que consiste na seleção de amostras 
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mais próximas do ponto que será estimado, na Figura 6B a seleção de amostras foi feita por 

quadrantes e na Figura 6 C foi realizada por octantes. 

 
Figura 6- Comparação de diferentes modos de selecionar amostras. A) Seleção das amostras realizada levando em 
consideração somente a distância entre as amostras. B) Seleção das amostras realizada por quadrantes. C)Seleção 
das amostras realizada por octantes. Retirado de Yamamoto (2001). 

 
 Além de escolher o critério para a seleção das amostras, é importante definir a quantidade 

de amostras que será utilizada para estimar o ponto, pois com uma pequena quantidade de 

amostras o ponto estimado tenderá ao valor das amostras escolhidas, por outro lado para uma 

grande quantidade de amostras o ponto estimado tenderá a média das amostras, assim é 

aconselhável o uso de oito amostras (Yamamoto, 2001), porém esse número é melhor definido 

testando-o na validação cruzada. 

A validação cruzada é uma técnica usada para definir os melhores parâmetros de 

vizinhança a ser utilizado e para aferir o ajuste do modelo teórico de semivariograma. Essa 

técnica consiste em estimar um ponto amostral eliminando-o da base de dados, sendo que a 

estimativa é baseada nas outras amostras da base de dados. Este processo é realizado até que 

todas as amostras do domínio tenham sido visitadas, com isto será possível avaliar os erros 

associados às estimativas das amostras (𝑧∗(𝑥𝑖) − 𝑧(𝑥𝑖)), visto que é conhecido o valor da 

amostra (𝑧(𝑥𝑖)) e seu valor estimado (𝑧∗(𝑥𝑖)) (Rossi e Deutsch, 2014).  

 Através do gráfico de dispersão dos valores reais das amostras em função dos valores 

estimados, como se mostra na Figura 7, é possível avaliar a validação cruzada, ou seja, o 

resultado da validação cruzada será melhor quando os pontos estiverem alinhados em uma reta 

com coeficiente angular próximo a 1 e com máximo valor de coeficiente de correlação (Deutsch, 

2002) 
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Figura 7- Representação de um resultado de validação cruzada. Retirado de Rossi e Deutsch (2014). 

 

4.6. Simulação Estocástica 

Através da simulação estocástica é possível obter vários modelos equiprováveis de um 

depósito mineral (Abzalov, 2016), sendo que cada modelo gerado corresponde a uma imagem 

estocástica (Deutsch e Journel, 1998).  

Diferentemente da estimativa realizada por krigagem que apresenta precisão local, os 

modelos gerados pela simulação possuem precisão global, consequentemente a simulação não 

apresenta o efeito de suavização que ocorre na krigagem, ou seja, a simulação estocástica não 

superestima valores baixos e não subestima valores altos (Rossi e Deutsch, 2014). Porém os 

modelos gerados pela simulação apresentam, em média, maiores erros do que a estimativa feita 

por krigagem (Olea, 1999). Então, a escolha entre krigagem e simulação deve ser feita no que é 

mais importante: a continuidade espacial dos dados (obtida pela simulação) ou menores erros 

em estimativas locais (obtida pela krigagem) (Olea, 1999). 

A simulação estocástica pode ser condicional ou não condicional, isto é, quando o ponto 

simulado coincidir com o ponto amostral e receber o valor da amostra então a simulação é dita 

condicional, porém se o ponto receber um valor aleatório a simulação é dita não condicional 

(Chilès e Delfiner, 1999). Rossi e Deutsch (2014) ressaltam que as simulações condicionais são 

usadas para quantificar a incerteza para classificação de recursos. A quantificação da incerteza 

é possível, pois os modelos gerados na simulação condicional apresentam diferenças entre si, 

apesar de possuírem o mesmo histograma e variograma amostral (Abzalov, 2016). Assim a 

incerteza é determinada pela análise estatística das diferenças existentes entre os 

modelos, sendo que a incerteza será maior quando os dados amostrais apresentarem maior 

variabilidade entre si e a quantidade de amostras for relativamente pequena (Abzalov, 2016). 

 



 

11 
 

4.6.1. Simulação por bandas rotativas 

 A simulação por bandas rotativas foi o primeiro método de simulação em três dimensões 

(Rossi e Deutsch, 2016). O método consiste em estimar um ponto em três dimensões através 

várias simulações unidimensionais ao longo de linhas, ou seja, o ponto simulado em 3D será a 

soma de suas projeções em pontos nas linhas. O condicionamento do método é realizado por 

duas krigagem (Olea, 1999). O algoritmo da simulação por bandas rotativas, pode ser descrito 

como (Olea, 1999):  

• Transformar a distribuição Z(x) para uma distribuição gaussiana, ou seja, para uma 

distribuição gaussiana com média igual a zero e variância igual a um.  

•  Realizar a análise geoestatística com finalidade de obter o melhor ajuste do modelo 

teórico de variograma para os dados transformados. 

• Derivar a covariância Cov1 [h] através do modelo teórico de variograma, que as realizações 

das linhas devem ter, com objetivo para gerar realizações de processos multidimensionais 

com covariância Covn [h].  

• Gerar as realizações de cada linha, sendo que ao longo de cada linha as realizações 

apresentaram a mesma covariância Cov1 [h]. Nesta etapa, as linhas são definidas em torno 

de um ponto central, formando uma esfera de raio unitário. 

• Somar as contribuições das linhas de realizações para produzir as simulações 

multidimensionais 𝑍𝑛(𝑥𝑖). Nesta etapa, o espaço será particionado em bandas de largura 

x, através de planos perpendiculares às linhas, estes planos são gerados entre cada uma 

das N realizações ao longo da linha uj. O ponto simulado será a soma das bandas que 

estão contidas neste ponto. O esquema desta etapa está ilustrado na Figura 8. 

 

Figura 8- Ilustração da simulação por turning bands em duas direções, como pode ser observar o espaço foi 

particionado em bandas e o valor simulado será a soma das bandas contidas nele. Retirado de Olea (1999). 

 



 

12 
 

• Realizar o condicionamento da simulação, pois o método por bandas rotativas resulta em 

valores que não honram os dados amostrais. Caso não haja necessidade do 

condicionamento, pule-se essa etapa. 

O condicionamento dos dados é realizado através de duas krigagem sendo realizadas 

nos dados amostrais transformados e para dados simulados. O processo de 

condicionamento é realizado quando os pontos simulados coincidirem com os pontos 

amostrais, com isso os valores simulados não condicionais são trocados pelos valores 

das amostras. A realização das krigagens tem como objetivo suavizar a mudança entre 

os valores das amostras e os valores simulados não condicionais, sendo que isso ocorre 

somente próximo às amostras (Rossi e Deutsch, 2014). O condicionamento é feito por: 

                                                             𝑧𝑠𝑐 = 𝑧𝑑 + 𝑧𝑠 − 𝑧𝑘𝑠                                                (6)   

sendo 𝑧𝑠𝑐  o valor da simulação condicional, 𝑧𝑑 o valor da krigagem utilizando os dados 

amostrais transformados, 𝑧𝑠 o valor da simulação não condicional e 𝑧𝑘𝑠 o valor da 

krigagem utilizado o valor dos dados simulados não condicionais. 

 

4.7. Krigagem simples 

Na simulação por rotação de bandas, o condicionamento dos dados é realizado por 

krigagem simples (Emery e Lantuéjoul, 2006), que é um método de estimativa condicional, ou 

seja, se o ponto estimado coincidir com o ponto amostral, o valor do ponto será o valor da amostra 

(Rossi e Deutsch, 2014). A krigagem simples corresponde a uma estimativa linear ponderada que 

necessita do conhecimento da média populacional da variável de interesse (Abzalov, 2016), 

sendo que seu objetivo é determinar um conjunto de pesos, que minimizam a variância do erro 

(Rossi e Deutsch, 2014). O ponto estimado por krigagem é calculado por (Rossi e Deutsch, 2014): 

                                                   𝑍𝐾𝑆
∗ (𝑥0) = 𝑚(𝑥0) + ∑ 𝜆𝑖

𝑛
𝑖=1 [𝑍(𝑥𝑖 − 𝑚(𝑥𝑖)]                                        (7)   

onde 𝑍𝐾𝑆
∗ (𝑋0) corresponde o valor do ponto estimado, 𝑍(𝑥𝑖) corresponde o valor das amostras 

utilizadas para estimativa, 𝑚(𝑥0) corresponde à média populacional, 𝑚(𝑥𝑖) corresponde à média 

amostral e 𝜆𝑖 corresponde ao peso de cada amostra usada para a estimativa. Vale ressaltar, que 

o peso de cada amostra é obtido pela resolução de um sistema de equação lineares, conforme 

(Yamamoto e Landim, 2013) : 

                                   [

𝐶 (𝑥1 − 𝑥1) 𝐶 (𝑥1 − 𝑥2)
𝐶 (𝑥2 − 𝑥1) 𝐶 (𝑥2 − 𝑥2)

… 𝐶 (𝑥𝑛 − 𝑥1)
… 𝐶 (𝑥𝑛 − 𝑥2)

: :
𝐶 (𝑥𝑛 − 𝑥1) 𝐶 (𝑥𝑛 − 𝑥2)

… :
… 𝐶 (𝑥𝑛 − 𝑥𝑛)

] . [

𝜆1

𝜆2
:

𝜆3

] = [

𝐶 (𝑥0 − 𝑥1)
𝐶 (𝑥0 − 𝑥2)

:
𝐶 (𝑥0 − 𝑥𝑛)

]              (8)                             

onde 𝐶(𝑥𝑖 − 𝑥𝑗) é a covariância entre duas amostras, 𝜆𝑖 é o peso de cada amostra e 𝐶(𝑥0 − 𝑥𝑖) é 

a covariância entre o ponto estimado e o n-ésimo ponto amostral, com 𝑖= 1, ..., n. 
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4.8. Anamorfose Gaussiana 

 A transformação dos dados pode ser feita através da função anamorfose gaussiana, que 

conforme Wackernagel (2003) é: 

                                                              𝑍 = 𝜑−1(𝑌)                                                               (9)                          

onde 𝜑−1 é uma função não linear, sendo bijetora que estabelece a relação entre uma variável 

aleatória 𝑍 e uma variável aleatória gaussiana 𝑌.  

 Porém quando a distribuição acumulada da variável aleatória 𝑍 é representada por uma 

função em degrau (𝐹(𝑍)), a transformação dos dados não será possível, pois 𝐹(𝑍) faz com que 

𝜑−1 não seja bijetora. Neste caso, a transformação dos dados é realizada em uma função 

suavizada composta por polinômios de Hermite (Wackernagel, 2003). 

Segundo Wackernagel (2003), a função anamorfose gaussiana com os polinômios de 

Hermite é bijetora no intervalo definido entre o valor mínimo e máximo das amostras da 

distribuição acumulativa da variável 𝑍, assim, é possível realizar a transformação dos dados. A 

seguir a função anamorfose gaussiana com polinômios de Hermite é escrita como (Rossi e 

Deutsch, 2014): 

                                                             𝑧(𝑢) = 𝛷(𝑦(𝑢)) ≈ ∑ 𝛷𝑝𝐻𝑝
∞
𝑝=0 (𝑦(𝑢))                                       (10) 

onde 𝛷𝑝 corresponde ao coeficiente de cada termo do polinômio, e 𝐻𝑃(𝑦(𝑢))corresponde os 

polinômios de Hermite. 

 

4.9. Teste de Bigaussianidade 

  Para comprovar a hipótese de multigaussianidade dos dados, é necessário realizar um 

teste que comprove tal característica, porém trata-se de um processo complexo, sendo mais fácil 

realizar o teste de bigaussianidade (Yamamoto e Chao, 2009), que compreende em averiguar se 

a distribuição entre dois pontos transformados Z(x) e Z(x+h), x, h é normal (Deutsch e Journel, 

1998). Caso o teste de bigaussianidade for positivo então assume-se que os dados são 

multigaussianos (Yamamoto e Chao, 2009).  

Segundo Rocha et al. (2017), o teste de bigaussianidade pode ser realizado através de 

um gráfico de dispersão entre os pontos transformados de Z(x) versus Z(x+h), se os dados forem 

bigaussianos, então o gráfico de dispersão gerado não irá apresentar a uma distribuição linear. 

 

4.10. Intervalo de Confiança da média 

 Devido a vários fatores como amostras não representativas, variabilidade do depósito, 

aplicação incorreta dos métodos matemáticos, falta de conhecimento para determinar os 

parâmetros para a estimativa entre outros, toda estimativa apresenta uma incerteza (Rossi e 
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Deutsch, 2014), consequentemente possui erro associado. Através de técnicas estatísticas 

estatística é possível quantificar a incerteza do modelo estimado (Rossi e Deutsch, 2014), ou 

seja, determinar um intervalo de valores onde o valor real da variável de interesse possa estar 

contido (Dubois e Prade, 2000). Porém o valor do erro só será conhecido em certos locais onde 

ocorreu a aquisição de dados (Rossi e Deutsch, 2014), pois o erro corresponde a diferença entre 

o valor estimado e o valor verdadeiro (Bárdossy e Fodor, 2004). 

A incerteza da estimativa pode ser determinada através do intervalo de confiança da 

média. Esse intervalo pode conter a média populacional, sendo obtido através da incerteza da 

média amostral (Pinheiro et al., 2012).O nível de confiança determina a probabilidade do 

parâmetro  μ estar contido no intervalo (Pinheiro et al., 2012) ,por exemplo, quando o nível de 

confiança for igual a 95%, o intervalo de confiança da média apresenta 95% de chance da média 

populacional estar contida neste intervalo. A equação (11) representa o intervalo da confiança da 

média (Larson e Farber, 2015): 

                                                  𝑋̅ − 𝑡1−
𝛼

2

𝑠

√𝑛
≤ 𝜇 ≤ 𝑋̅ + 𝑡1−

𝛼

2

𝑠

√𝑛
                                                    (11)  

onde: 𝑋̅ é a média amostral; 𝑡1−
𝛼

2
  é o quartil 1 −

𝛼

2
 da distribuição 𝑡 com 𝑛 − 1 graus de liberdade;  

correspondente ao nível de confiança; 𝑛 é o tamanho da amostra; s corresponde ao desvio padrão 

amostral; 𝜇 representa a média populacional. 

Para obter o intervalo de confiança da média é preciso ter a distribuição da média amostral 

,quando o desvio padrão populacional é desconhecido a variável média amostral comporta-se 

como a distribuição t de Student para uma variável aleatória que é normalmente distribuída, ou 

seja, para uma variável que apresenta simétrica em torno da média e em forma de sino e área 

sob a curva igual a um (Larson e Farber, 2015). A distribuição t de Student é simétrica e possui 

média, moda e mediana iguais a zero (Larson e Farber, 2015), ou seja, centrada em zero. Em 

relação à distribuição normal a distribuição t é mais dispersa em torno de zero (Pinheiro et al, 

2012). 

      A distribuição t de Student é dependente do parâmetro graus de liberdade, que corresponde 

ao número de observações que podem ser escolhidas livremente (Mann e Lacke, 2010), assim o 

valor desse parâmetro equivale ao tamanho da amostra menos um (Larson e Farber, 2015). 

Segundo Larson e Farber (2015), distribuição t tende a distribuição normal com aumento dos 

graus de liberdade. Representa-se na Figura 9 representa uma distribuição t com 14 graus de 

liberdade, onde a área central apresenta 95% de chance de conter a média populacional. 
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Figura 9- Distribuição t de Student para 14 graus de liberdade e com nível de confiança de 95%. Retirado de Larson e 
Farber, 2015. 

 
 Segundo Davis (1986), as estatísticas baseadas em variáveis com distribuição normal, 

como o intervalo de confiança da média, podem ser usadas também em  variáveis com 

distribuição não normal, pois o teorema do limite central assegura que a média da distribuição 

não normal tende a média da distribuição normal e também que a distribuição não normal tende 

a distribuição normal com o aumento da quantidade de amostras. 

 Na maioria das referências bibliográficas, a semi-amplitude, que corresponde à metade 

do intervalo de confiança da média,  é denominada indevidamente como erro, pois a definição de 

erro corresponde a diferença do valor estimado e o valor verdadeiro do parâmetro, como o valor 

verdadeiro não é conhecido, consequentemente não é possível determinar o valor do erro 

(Bárdossy e Fodor, 2004). Então, o mais adequado seria o uso do termo incerteza, pois sua 

definição refere-se um intervalo de valores onde valor real da variável de interesse possa estar 

contido (Dubois e Prade, 2000). A equação do termo incerteza, como pode ser observado em 

Larson e Farber (2015) :  

                                                                     𝐼 = 𝑡1−
𝛼

2

𝑠

√𝑛
                                                                          (12) 

onde: 𝐼 corresponde a incerteza; 𝑡1−
𝛼

2
  é o quartil 1 −

𝛼

2
  da distribuição 𝑡 com 𝑛 − 1 graus de 

liberdade; s corresponde ao desvio padrão amostral;  𝑛 é igual ao tamanho da amostra. 

 

4.11. Classificação de Recursos Minerais 

 Com a finalidade de dar transparência aos investidores e evitar fraudes, surgiu a 

necessidade da criação de guias para declarações públicas de resultados de exploração, 

recursos e reservas minerais (Rossi e Deutsch, 2014). O primeiro guia de grande relevância foi 

publicado em 1989, corresponde ao código JORC usado na Australásia (Abzalov, 2016), não 

obstante surgiram outros de igual importância como NI 43-101 no Canadá, SAMREC na África 

do Sul e SME nos EUA (Rossi e Deutsch, 2014).  
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 Os códigos apresentavam diferenças entre si, pois foram criados de acordo com a 

necessidade de cada país (Abzalov, 2016). Porém, com a globalização e abertura dos mercados 

verificou-se a necessidade de padronizar internacionalmente os guias, levando a criação do grupo 

CMMI (Internacional Resources/Reserves Definitions Gruop), que posteriormente foi substituído 

pelo CRIRSCO (Committee for Mineral Resources and Mineral Reserves) (Bertossi, 2011). 

 Os países membros da CRIRSCO, como Brasil, Canadá, EUA, Chile, África do Sul, 

Austrália e outros (CBRR, 2016), apresentam seus guias em concordância ao modelo 

desenvolvido pela entidade, sendo esse modelo baseado no Código JORC (AusIMM, 2012). Os 

guias alinhados ao CRIRSCO determinam que as declarações públicas tenham três princípios 

fundamentais, que são: 

• Transparência, exige que as informações contidas em uma declaração pública 

devem ser suficientes, claras e sem ambiguidades para que o leitor tenha 

compreensão fiel do conteúdo (CBRR, 2016). 

• Materialidade demanda que informações sejam relevantes, para que os 

investidores e seus consultores possam fazer um julgamento equilibrado e 

fundamentado sobre o conteúdo da declaração pública. Caso falte alguma 

informação relevante deve ser justificado o motivo para tal ausência (CBRR, 2016). 

• Competência requer que a declaração pública seja realizada de acordo com o 

trabalho de um profissional qualificado, experiente e que aja conforme código de 

ética profissional (CBRR, 2016).  

Em 2015, o Brasil tornou se membro da CRIRSCO, devido a iniciativa da Comissão 

Brasileira de Recursos e Reservas (CBRR), que desenvolveu o guia para o país (CBRR, 2016). 

Nesse guia estabelece-se que os recursos minerais sejam divididos em classes nas declarações 

públicas e que esta classificação seja realizada de acordo com o conhecimento geológico e na 

confiança dos dados geológicos disponíveis, ou seja, conforme o aumento do nível de 

confiabilidade e conhecimento geológico os recursos minerais são definidos em inferido, indicado 

e medido (CBRR, 2016). Quando a incerteza da estimativa for relativamente alta e não permitir 

que seja realizado um estudo de viabilidade econômica, então o recurso é classificado como 

inferido (CBRR, 2016). Quando a incerteza da estimativa é suficiente para permitir um estudo de 

viabilidade econômica, então o recurso é classificado como indicado, já quando a incerteza da 

estimativa for relativamente baixa e permitir um estudo de viabilidade econômica com alto nível 

de confiabilidade, o recurso é classificado como medido (CBRR, 2016). 

 Os recursos minerais indicado e medido podem ser convertidos em reservas minerais 

provável e provada, de acordo com os fatores modificadores que afetam a extração, que podem 

ser de aspectos econômicos, ambientais, legais, governamentais entre outros (CBRR, 2016). 
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Cabe destacar, que reserva é a parte economicamente lavrável do recurso mineral (CBRR, 2016). 

Na Figura 10, representa-se o esquema para classificação de recursos e reservas minerais. As 

terminologias das classes de recursos de acordo com CBRR podem ser observadas no Anexo 

1.    

 

Figura 10- Sistema de classificação de recursos e reservas minerais. Retirado de CBRR, 2016. 

 

Analisando essa terminologia percebe-se que as definições não apresentam os 

procedimentos e metodologia para que se realize a classificação, isto, pode ser explicado pela 

dificuldade de adotar um método que se aplique a todos os diferentes depósitos minerais (Rossi 

e Deutsch, 2014). Por consequência, a classificação fica sob responsabilidade Profissional 

Qualificado (Rossi e Deutsch, 2014), que decide desde do melhor método para realizar a 

estimativa até os critérios para determinar as classes de recursos (CBRR, 2016).  

No Brasil, o termo Profissional Qualificado refere-se ao profissional associado a CBRR, 

que possui pelo menos 10 anos de experiência profissional, sendo que pelo menos 5 anos de 

experiência em um determinado tipo de depósito mineral e na atividade por qual é responsável 

(CBRR, 2016). Esse profissional também deve ter 3 anos em Posição de Responsabilidade, que 

corresponde ao um cargo que a participação do profissional seja significativa e importante para 

realizar a atividade pela qual é responsável. 
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Segundo Rossi e Deutsch (2014), quando a classificação dos recursos minerais é 

baseada na incerteza da estimativa, normalmente o recurso será medido quando a incerteza é 

de no máximo 15% , o recurso será indicado quando a incerteza for superior a 15% e inferior a 

30% e por fim o recurso será inferido quando a incerteza é no mínimo 30%, sendo que o nível de 

confiança considerado igual  a 90% . 

 

5. MATERIAIS E MÉTODOS  

Para desenvolvimento desta monografia foi utilizado o programa Isatis e o Excel. Além 

disso, o banco de dados utilizado é referente a Mina de Capanema. 

Os métodos aplicados no desenvolvimento desta monografia consistem no tratamento de 

dados (conferências da base de dados e regularização das amostras), análise estatísticas e 

geoestatística, seguido pela simulação estocástica por bandas rotativas e pelo intervalo de 

confiança da média e, por fim, a classificação de recursos. 

Vale ressaltar que para realizar a análise geoestatística foi necessário determinar os 

seguintes parâmetros: campo geométrico, tamanho do passo, tolerância do passo, número de 

passo e tolerância angular. O campo geométrico corresponde à metade do domínio amostral para 

cada direção analisada. O tamanho do passo consiste na distância média entre as amostras na 

direção analisada. A tolerância do passo equivale a 50% do tamanho do passo, para que não 

haja classe de distância sem nenhuma informação e nem sobreposição de informações nos 

passos adjacentes. O número de passos corresponde ao valor da divisão do campo geométrico 

pelo tamanho do passo. A metade da diferença entre as direções adjacentes corresponde a 

tolerância angular, esse parâmetro é necessário para que o variograma contenha a variância 

espacial de todas as direções. A tolerância angular para o variograma de direção 0°/90° deve ser 

um valor relativamente baixo para que não ocorra interferência dos valores de furos vizinhos no 

cálculo do variograma experimental, então utilizou o valor de 20°. 

6. RESULTADOS OBTIDOS E DISCUSSÕES 

6.1. Conferência da base de dados 

 A base de dados utilizada é composta por 71 furos de sondagem, totalizando 761 

amostras, sendo que amostragem foi realizada preferencialmente alinhado em: NE-SW. 

Inicialmente, foi realizada a conferência da base de dados, que consistiu em verificar a 

presença de erros, como falta de informações (gap), sobreposição de informações (overlap), 

valores atípicos (outlier) e outros, que pudessem causar problemas ou influenciar os resultados 

das etapas posteriores. 

Nesta conferência, foi verificado que os dados do furo CP-24 estavam duplicados e para 

resolver esta situação, as informações duplicadas foram excluídas. Também foi constatado que 
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o furo CP-62, apresentava espaços vazios em alguns dados de litologia e teores de Fe, Al2O3, 

SiO2, P e PPC, então para estes espaços foram atribuídos o valor de -999, para indicar ausência 

de informação. Não foram reconhecidos erros de coordenadas, como pode ser observado pela 

análise da Figura 11, pois todos os pontos estão contidos na cava da mina e circunjacências. 

 

Figura 11- Localização dos furos de sonda da mina de Capanema. 

Com todas as incoerências retiradas ou ajustadas, foi dado prosseguimento aos trabalhos. 

 

6.2. Análise Estatística 

A análise estatística, foi realizada, e essa que consistiu em calcular a média, mediana, 

moda, desvio padrão, variância e coeficiente de variação. Esses parâmetros são apresentados 

na Tabela 1, e o histograma das variáveis Fe, Al2O3 e P, podem ser observadas na Figura 12. 

Esta análise teve como objetivo o melhor entendimento das variáveis e do depósito mineral. 

 

Tabela 1- Estatística descritivas da variável Fe, Al2O3 e P antes da regularização das amostras. 

Variável  *N.  Mínimo  Máximo  Média  Mediana Moda    *D.P. Variância     *C. V. 

Fe 761 27,15 67,52 55,71 57,8 62 8,10 65,61 0,145 

Al203 761 0,03 21,22 2,07 1,63 2 1,90 3,61 0,918 

P 760 0,01 0,23 0,08 0,069 - 0,04 0,0018 0,555 
*N. corresponde ao número de amostras, D.P corresponde ao desvio padrão e C.V. corresponde ao coeficiente de 

variação. 

 

 Analisando os histogramas percebe-se que a variável Fe apresenta distribuição 

assimétrica negativa, que corresponde a uma distribuição de baixa variabilidade, essa 

característica é evidenciada pelo valor baixo do coeficiente de variação que indica que os dados 
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são homogêneos. A variável Al2O3 apresenta uma distribuição assimétrica positiva com a 

presença de outliers, indicando que variável apresenta com alta variabilidade, fato evidenciando 

também pelo alto valor de coeficiente de variação. A variável P apresenta uma distribuição 

assimétrica positiva, que indica uma distribuição de média a alta variabilidade, consequentemente 

possui alto valor de coeficiente de variação que indica dados heterogêneos. Comparando os 

valores de coeficientes de variação e os histogramas, percebe-se que o nível de variabilidade 

aumenta na seguinte ordem: Fe, P e Al2O3.  

 

Figura 12- Histogramas dos dados amostrados antes da regularização das amostras da variável Fe (A), Al2O3(B) e P 

(C). 

 

 

 

 



 

21 
 

6.3. Regularização das Amostras  

Como os tamanhos das amostras variam de 0,10 a 71,90 metros, foi necessário realizar 

a regularização das amostras. 

As amostras foram regularizadas para 13 metros, sendo correspondente à altura da 

bancada da Mina de Capanema. Porém quando não foi possível a regularização para este valor, 

a regularização das amostras foi feita com o limite mínimo igual a 10 metros, pois as variáveis 

Al2O3 e P apresentam distribuições de alta variabilidade, assim não é aconselhável que o limite 

mínimo seja muito diferente que o tamanho padrão da regularização. 

Após a regularização das amostras, a análise estatística foi calculada novamente, para 

conferir se a regularização das amostras foi adequada. Na tabela 2 são apresentadas as 

estatísticas descritivas após a regularização. Os histogramas das variáveis depois da 

regularização das amostras são apresentados na Figura 13. 

 

Tabela 2- Estatísticas descritivas da variável Fe, Al2O3 e P depois da regularização das amostras. 

Variável      *N. Mínimo  Máximo  Média  Mediana Moda    *D.P Variância     *C.V 

Fe 332 27,15 66,80 55,77 57,63 42,11 7,68 59,048 0,138 

Al203 332 0,16 15,33 1,91 1,54 1 1,64 2,677 0,856 

P 330 0,01 0,21 0,07 0,07 0,05 0,04 0,0015 0,515 
*N. corresponde ao número de amostras, D.P corresponde ao desvio padrão e C.V. corresponde ao coeficiente de 

variação. 

Analisando as Tabelas 1 e 2, observa-se que o valores da variância para as três variáveis 

diminuíram com a regularização das amostras, pois como variância x volume= constante (Rossi 

e Deutsch, 2014) e como regularização aumentou o volume das amostras, consequentemente o 

valor da variância deve diminuir. Também se observa que as médias das variáveis Al2O3 e P 

diminuíram, este fato está relacionado com a média ponderada usada para regularização das 

amostras, que tende a minimizar os valores extremos, ou seja, valores muito baixos ou altos. 

Porém, a mudança nos valores das médias, foi considerada pequena, o que indica que 

amostragem é representativa do domínio. Analisando os histogramas, percebe-se que não houve 

mudança no tipo de distribuição das variáveis, reforçando que a amostragem é representativa do 

domínio. Mediante ao exposto, conclui-se que a regularização das amostras foi realizada de modo 

adequado. 
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Figura 13- Histogramas dos dados amostrados depois da regularização das amostras para as variáveis Fe (A), Al2O3 

(B) e P (C). 

 

6.4. Transformação dos dados 

 Para que seja feita a simulação por bandas rotativas, é necessário transformar os dados 

para distribuição gaussiana padrão, ou seja, distribuição com média igual a zero e variância igual 

a um. 

A transformação dos dados foi realizada através da função anamorfose gaussiana, sendo 

que para cada variável foram considerados números distintos de polinômios com a finalidade de 

definir o melhor ajuste (à distribuição acumulada dos dados). 

O ajuste da função anamorfose gaussiana na distribuição acumulativa de cada variável, 

pode ser observado na Figura 14, onde a curva magenta correspondente aos polinômios de 

Hermite que precisam ser ajustados à curva preta para que ocorra a transformação dos dados. A 
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função que descreve a nova distribuição da variável é representada pela curva azul e a 

distribuição cumulativa original da variável pela curva preta. 

A variável Fe precisou de 96 polinômios de Hermite para que ocorresse a transformação 

dos dados, a Al2O3 de 86 polinômios e o P de 71 polinômios. 

 Os histogramas das novas distribuições podem ser observados na Figura 15 (A, B e C) e 

as estatísticas descritivas na Tabela 3. Destaca-se que as novas distribuições, como esperado, 

apresentam média igual a zero e desvio padrão igual a 1. 

 

Tabela 3- Estatística descritivas dos dados das variáveis Fe, Al2O3 e P transformados. 

Variável  Número de Amostras  Mínimo  Máximo  Média  Desvio Padrão  

Fe 332  -3,11 3,11 0 1 

Al203 332  -3,16 3,16 0 1 

P 330  -3,06 3,06 0 1 

 

 

Figura 14-Ajuste da função anamorfose gaussiana na distribuição cumulativa para que ocorra a transformação dos 

dados as variáveis Fe (A), Al2O3 (B) e P (C). 
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Figura 15-Histogramas dos dados transformados para uma distribuição gaussiana da variável Fe (A), Al2O3(B) e P 

(C). 

 

6.5. Teste de Bigaussianidade 

Para averiguar se os dados transformados correspondem a dados bigaussianos, foi 

realizado o teste de bigaussianidade pela construção de diagramas de dispersão de Z(x) versus 

Z(x+h) para os dados transformados, como pode ser observado na Figura 16. 

 

Figura 16- Teste de biguassianidade dos dados atráves gráficos de dispersão Z(x) versus Z(x+h) para a variável Fe 

(A), Al2O3 (B) e P (C) com dados transformados. 

 

 Como as nuvens de dispersão não se alinham a uma reta pode-se considerar que, as 

variáveis x e x+h são independentes entre si, desta forma confirma-se a hipótese de 

bigaussianidade dos dados. 

 

6.6. Análise Geoestatística 

 Realizou-se a análise exploratória para cada variável, isto é, calculou-se o variograma 

experimental para as direções 0°/0°, 45°/0°, 90°/0°, 135°/0° e 0°/90° com objetivo de identificar 

se os domínios analisados apresentavam anisotropia. Na tabela 4, apresenta os parâmetros 

utilizados para o cálculo do variograma experimental. 
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Tabela 4- Parâmetros utilizados no cálculo dos variogramas experimentais. 

Parâmetros 
Direção 

0°/0° 45°/0° 90°/0° 135°/0° 0°/90° 

Campo Geométrico 1308 500 850 1300 150 

Tolerância Angular 22,5° 22,5° 22,5° 22,5° 20° 

Tamanho do Passo 100 100 100 150 13 

Número de Passo 13 5 8 8 11 

Tolerância do Passo 50% 50% 50% 50% 50% 

 

A Figura 17 corresponde aos variogramas experimentais da análise exploratória. 

Analisando a Figura 17, percebe-se que na direção de 135°/0° apresenta variograma melhor 

estruturado para as variáveis Fe, Al2O3 e P em relação às outras direções, porém o variograma 

para esta direção em todos os domínios apresenta valor alto de efeito pepita, porém será utilizado 

o efeito pepita obtido no variograma da vertical como representativo do domínio. O campo 

geométrico das direções 0°/0° e 90°/0° é pequeno o que comprometeu a estruturação do 

variograma experimental. O variograma na direção de 45°/0° é estruturado para a variável do P, 

porém o Fe e para a Al2O3 não é tão bem estruturado, apesar disso, como na direção 135°/0° o 

variograma experimental é bem estruturado o modelo teórico de variograma foi ajustado para o 

par coplanar 45°/0° e 135°/0° mais a ortogonal não coplanar (0°/90°). Interpretou-se a anisotropia 

mista para todas as variáveis. 
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Figura 17- Análise exploratória para as variáveis Fe (A), Al2O3(B) e P (C). 

 

 Para realizar o ajuste do modelo teórico de variograma, foram calculados os variogramas 

experimentais somente nas direções que definem a elipse de anisotropia, com os mesmos 

parâmetros utilizados na Tabela 4, porém alterando a tolerância angular para 45° nas direções 

de 45°/0°e 135°/0°. 

Cabe destacar, que a elipse que representa anisotropia possui seu eixo maior na direção 

135°/0°, o eixo médio na direção 45°/0° e o seu eixo menor na direção 0°/90°. Para a correção 

da anisotropia será necessário rotacionar o sistema de eixos para direção de maior continuidade 

espacial, que no caso é a direção de 135°/0°. 

 Os parâmetros utilizados para o ajuste para a variável Fe apresentam-se na Tabela 5, 

para a variável Al2O3 na Tabela 6 e para a variável P na Tabela 7, mostra-se na Figura 18 o 

variograma experimental com o modelo ajustado. 
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 Pode-se observar no Anexo 2 o ajuste realizado para cada variável individualmente por 

direção. 

 

Tabela 5- Modelo Teórico de variograma para a variáveis Fe. 

Fe 

Efeito Pepita= 0,05 

Estrutura  
Amplitude 

U (m) 
Amplitude 

V(m) 
Amplitude 

W (m) 
Variância 
Espacial  

Modelo  
Direção de 
Rotação 

1°Estrutura  290 150 77 0,95 Esférico 135°/0° 
2°Estrutura  500 - - 0,05 Esférico 135°/0° 

 
 
 
Tabela 6- Modelo Teórico de variograma para a variáveis Al2O3. 

Al2O3 

Efeito Pepita= 0,05 

Estrutura  
Amplitude 

U (m) 
Amplitude 

V(m) 
Amplitude 

W (m) 
Variância 
Espacial  

Modelo  
Direção de 
Rotação 

1°Estrutura  415 350 100 1 Esférico 135°/0° 
2°Estrutura  - 350 100 0,16 Esférico 135°/0° 
3°Estrutura  - - 100 0,05 Esférico 135°/0° 

 
 
 
Tabela 7- Modelo Teórico de variograma para a variáveis P. 

P 

Efeito Pepita= 0,05 

Estrutura  
Amplitude 

U (m) 
Amplitude 

V(m) 
Amplitude 

W (m) 
Variância 
Espacial  

Modelo  
Direção de 

Rotação 
1°Estrutura  263 164 82 0,97 Esférico 135°/0° 
2°Estrutura  - 164 - 0,12 Esférico 135°/0° 
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Figura 18- Modelo teórico de variograma para variáveis Fe (A), Al2O3  (B) e P (C). 

 

6.6.1. Validação Cruzada 

Foi necessário realizar a validação cruzada para determinar os melhores parâmetros de 

vizinhança para simulação.  

Foram testadas algumas vizinhanças diferentes, e o critério para escolher o melhor 

conjunto de parâmetros foi baseado na quantidade de amostras estimadas e no coeficiente de 

correlação entre os dados estimados e os amostrais. Os cenários gerados na validação cruzada 

para a variável Fe encontram-se na Tabela 6A, para a variável Al2O3, na Tabela 6B e do P na 

Tabela 6C os parâmetros escolhidos estão destacados nas tabelas em azul. Vale ressaltar que 

para todos os cenários o elipsóide de busca foi rotacionado de acordo com a elipse de anisotropia. 
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Tabela 6-Validação cruzada para a variável Fe. Os melhores parâmetros estão destacados em azul. 

Raio de Busca  Quantidade 
Mínima de 
Amostras  

*Setor 
Quantidade de 

amostras por setor 
Divisão 

de Z 
*N. *C.R 

U V W 

500 150 77 4 4 2 Não 330 0,769 

500 150 77 4 4 2 Sim 330 0,779 

500 150 77 4 8 2 Sim 330 0,778 

500 150 77 4 8 2 Não 330 0,768 

500 150 77 4 4 1 Sim 331 0,781 

500 150 77 4 8 1 Sim 331 0,784 

290 150 77 3 8 2 Sim 330 0,785 

290 150 77 4 8 1 Sim 329 0,782 
*Setor corresponde a quantidade de setores, podendo ser em quadrante ou octante, N. corresponde a quantidade de 
amostras utilizadas e C.R corresponde ao coeficiente de correlação. 

 
 
Tabela 7- Validação cruzada para a variável Al2O3. Os melhores parâmetros estão destacados em azul. 

Raio de Busca  Quantidade 
Mínima de 
Amostras  

*Setor 
Quantidade de 

amostras por setor 
Divisão 

de Z 
*N. *C.R 

U V W 

400 210 83 4 4 3 Não 332 0,803 

400 210 83 4 4 2 Sim 332 0,798 

400 210 83 4 8 2 Sim 332 0,800 

400 210 83 4 8 2 Não 332 0,801 

400 210 83 4 4 2 Não 332 0,804 

400 210 83 4 4 1 Não 332 0,787 

400 210 83 3 4 2 Não 332 0,804 

300 200 70 4 4 2 Não 331 0,803 
*Setor corresponde a quantidade de setores, podendo ser em quadrante ou octante, N. corresponde a quantidade de 
amostras utilizadas e C.R corresponde ao coeficiente de correlação. 

 

 

Tabela 8- Validação cruzada para a variável P. Os melhores parâmetros estão destacados em azul. 

Raio de Busca  Quantidade 
Mínima de 
Amostras  

*Setor 
Quantidade de 

amostras por setor 
Divisão 

de Z 
*N. *C.R 

U V W 

263 164 82 4 4 2 Não 329 0,813 

263 164 82 4 4 2 Sim 329 0,818 

263 164 82 4 8 2 Sim 329 0,816 

263 164 82 4 8 2 Não 329 0,814 

263 164 82 4 4 1 Sim 329 0,816 

263 164 82 3 4 2 Sim 330 0,819 

263 164 82 3 4 1 Sim 330 0,818 

200 164 65 3 4 2 Sim 321 0,811 
*Setor corresponde a quantidade de setores, podendo ser em quadrante ou octante, N. corresponde a quantidade de 
amostras utilizadas e C.R corresponde ao coeficiente de correlação. 



 

30 
 

6.7. Simulação por Bandas Rotativas 

 Com os parâmetros de vizinhança definidos, a simulação por bandas rotativas foi 

realizada, inicialmente foi proposto realizar a simulação sequencial gaussiana, porém quando 

número de pontos simulados é maior que 1000 o variograma da simulação não é igual ao 

variograma amostral (Chilès e Delfiner, 1999), então optou-se por realizar a simulação por bandas 

rotativas com 1200 bandas, sendo gerados 100 cenários para cada variável analisada.   

A simulação por bandas rotativas foi realizada por bloco, ou seja, quando o bloco a ser 

simulado é dividido em sub-blocos e o ponto simulado corresponde à média dos pontos amostrais 

de cada sub-bloco (Yamamoto, 2001), sendo que a bloco foi dividido por 2x2x1 (eixo x e y foi 

dividido em 2 subbocos e o eixo z não foi divido). Vale ressaltar, que a simulação foi realizada 

dentro da fronteira convexa, que corresponde ao um polígono convexo com menor quantidade 

de vértices que engloba os dados amostrais (Everitt, 2002). 

 Para verificar a ergodicidade dos variogramas das simulações realizadas, foi necessário 

realizar o ajuste do modelo teórico de variograma dos dados originais para cada variável, sendo 

que os parâmetros utilizados no ajuste são apresentados no anexo 3, e os modelos ajustados 

são mostrado no Anexo 4.  Já o teste de ergodicidade está na Figura 19 da variável Fe, na Figura 

20 da variável Al2O3 e na Figura 21 da variável P. 

 

Figura 19- Teste de ergodicidade do variograma para a variável Fe nas direções de 45°/0° (A), 135°/0° (B) e 0°/90° 

(C).  
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Figura 20- Teste de ergodicidade do variograma para a variável Al2O3 nas direções de 45°/0° (A), 135°/0° (B) e 

0°/90° (C).  

 

Figura 21- Teste de ergodicidade do variograma para a variável P nas direções de 45°/0° (A), 135°/0° (B) e 0°/90° 

(C).  
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 Analisando o teste de ergodicidade, para a variável ferro percebe-se que o variograma 

dos dados amostrais apresenta maior patamar e amplitude em relação aos variogramas dos 

cenários gerados, ou seja, os dados amostrais apresentam maior variância e continuidade 

espacial em relação aos cenários simulados, conclui-se que os variogramas dos dados simulados 

não é ergodico ao variograma amostral. Para a variável Al2O3, o variograma dos dados amostrais 

apresenta menor patamar em relação à média das realizações da simulação, para as direções 

de 45°/0° e 0°/90° o variograma dos dados amostrais apresenta menor amplitude do que a média 

das realizações, somente na direção 135°/0° o variograma dos dados amostrais apresenta maior 

amplitude, somente nesta direção o variograma dos dados amostrais está mais próximo a média 

das realizações das simulações. Para a variável P, o variograma dos dados amostrais apresenta 

maior patamar e amplitude em relação aos variogramas das realizações, os dados amostrais 

apresentam maior variância e continuidade espacial em relação aos cenários simulados, então 

conclui-se que a média das realizações não é representativa aos dados amostrais. 

 

6.8. Classificação de Recurso 

 Para realizar a classificação de recurso de ferro na Mina de Capanema, foi necessário a 

quantificação da incerteza de cada bloco simulado dos 100 cenários gerados. Esta quantificação 

foi realizada por meio do intervalo de confiança da média parametrizado pela média de cada 

bloco. 

 Foi necessário calcular o desvio padrão e a média de cada bloco simulado, assim como 

também o valor do parâmetro t que para n igual a 100 cenários corresponde a 1,66. As incertezas 

dos blocos para cada variável foram calculadas, sendo que para o Ferro a incerteza dos blocos 

variam de 0,14 % a 2,78%, já para o fósforo varia de 1,52% a 9,25% e para a alumina varia de 

3,06% a 19,60%, estes resultados refletem a variabilidade de cada variável, ou seja, o ferro por 

ser menos heterogêneo com uma distribuição assimétrica negativa apresentou incerteza menor 

para os blocos simulados, o fósforo por apresentar maior variabilidade que o ferro e menor que a 

alumina,  apresentou uma incerteza maior que o ferro e menor que a alumina, e, por fim,  a 

alumina que apresenta alta variabilidade com a presença de maior quantidade de outliers em 

relação às outras variáveis, apresentou as maiores incertezas. 

A classificação de recursos da mina foi baseada na incerteza do ferro e dos 

contaminantes, fósforo e alumina. Foi proposto inicialmente, fazer uma seleção dos blocos que 

possuíssem teor superior ao teor de corte do ferro e inferior aos teores limites dos contaminantes 

para depois realizar a classificação, porém esta seleção ao considerar os teores de corte 

consideraria um fator modificador para classificação de recurso,  o que  não ocorre na 

classificação de recurso, mas sim de reserva, por isso a classificação não utilizou esses critérios. 
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A classificação dos blocos simulados foi realizada conforme: 

• Recurso Inferido quando pelo menos uma das variáveis apresentou incerteza superior a 

30%. 

• Recurso Indicado quando pelo menos uma das variáveis apresentou incerteza entre 15% 

a 30%. 

• Recurso Medido quando as três variáveis apresentaram incerteza inferior a 15%. 

Cabe destacar, que os critérios usados para a classificação de recurso foram baseados e 

adaptados de Rossi e Deutsch (2014). 

  Com a classificação dos blocos, obteve-se 7429 blocos classificados como medido, 

conforme apresentados nas Figura 22 e 23, e 539 blocos classificados como indicado (Figura 24 

e 25), nenhum bloco foi classificado como inferido. Analisando as Figuras 24 e 25, percebe-se 

que os blocos indicados estão na borda do corpo, o que pode estar relacionado com à menor 

quantidade de amostras nestas regiões gerando maior incerteza maior, já os blocos medidos 

estão concentrados na porção central do corpo justamente na região com maior amostragem e 

consequentemente menor incerteza.   

 

 
Figura 22- Localização em planta dos blocos classificados como recurso medido. 
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Figura 23- Localização dos blocos classificados como recurso medido representado em visada oblíqua. 
 

 
Figura 24- Localização em planta dos blocos classificados como recurso indicado. 
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Figura 25- Localização dos blocos classificados como recurso indicado representado em visada oblíqua. 
. 

 Inicialmente, foi proposto realizar o cálculo de recurso da mina de Capanema, através da 

equação R=VDT, sendo o V correspondente ao volume de cada bloco, D correspondente a 

densidade e T correspondente ao teor médio do ferro (Yamamoto e Rocha, 2001), porém optou-

se realizar a curva de teor de corte x metal contido para cada tipo de recurso para analisar a 

quantidade de metal contido em relação a diferentes teores de corte ferro da mina. 

 Para obter esta curva, é necessário obter  a quantidade de metal contido para 

determinados teores de corte, através da equação R=VDT, onde T corresponde ao teor de corte, 

d corresponde a densidade média do minério da Mina de Capanema, sendo seu valor igual a 

2,73 g/cm3 (valor obtido através da média do minério encontrado em Rocha (1999)), também foi 

necessário o volume de cada bloco que corresponde a 32 500 m3. A Figura 26 mostra a curva 

de teor x tonelagem para recurso medido (A) e  recurso indicado (B). 
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Figura 26- Curvas de teor x tonelagem para recurso medido (A) e indicado (B). 

 
 Analisando a Figura 26, percebe-se que a curva do recurso medido é mais suave que do 

recurso indicado, mostrando que o recurso medido apresenta teores maior dispersão de teores 

do que o recurso indicado, assim como apresenta também maior tonelagem. Também pode ser 

observado, na Figura 20, que a curva de teor x tonelagem do recurso medido apresentou maior 

decréscimo de tonelagem entre os teores de ferro igual 55 a 60, e que o recurso medido apresenta 

teor mínimo de 43 e o teor máximo de 64, já o recurso indicado apresenta uma curva com 

inclinação acentuada entre teores de ferro de  55 a 59, ou seja, maior decréscimo de tonelagem 

entres estes teores, o recurso indicado apresenta teor mínimo igual 43 e o teor máximo de 59. 

7. CONCLUSÕES 

O uso do intervalo de confiança da média para a quantificação da incerteza para a 

classificação de recursos seria indicado para depósitos com média a alta variabilidade, ou seja, 

para recurso que apresentam distribuição assimétrica positiva com grande presença de outliers 

e com alto coeficiente de variação. Esta conclusão está relacionada com os resultados obtidos 

das incertezas das variáveis analisadas nesta monografia, visto que a variável menos 

heterogênea apresentou pequena incerteza e a variável mais heterogênea apresentou maior 

incerteza doF que as outras variáveis e somente por causa desta incerteza maior foi possível 

classificar blocos como indicados, assim pode-se concluir que o nível de incerteza calculado pelo 

intervalo de confiança da média está diretamente relacionado com a variabilidade da variável.       

 Mediante ao exposto, depósitos homogêneos e bem amostrados (amostras são 

representativas do depósito), como no caso da Mina de Capanema, não é aconselhável que se 

use incerteza quantificada através do intervalo de confiança da média para a classificação de 

recurso visto que 93% dos blocos da Mina de Capanema foram classificados como recurso 

medido, tal fato não é factível, pois espera-se que nas bordas de um depósito e lugares onde a 
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amostragem não seja tão representativa tenha a presença de blocos classificados como indicado 

e inferido. Conclui-se que este parâmetro não é o mais indicado para classificar recursos minerais 

e, deste modo um critério mais adequado deve ser assumido, como por exemplo a quantidade e 

distância de amostras no entorno dos blocos classificados, ou ainda a proporção da amplitude do 

variograma para definir as diferentes classes de recursos minerais, isto é, presença de ao menos 

uma amostra a uma distância de até 1/3 da amplitude o recurso será medido, de 1/3 a 1 amplitude 

o recurso é indicado e acima de 1 amplitude o recurso é inferido. Assim, cabe ao profissional 

qualificado decidir o melhor método para ser utilizado visto que nenhum guia de classificação 

determina o método a ser utilizado.  
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ANEXO 

Anexo 1 

Definição da terminologia utilizada nos sistemas de classificação de recursos e reservas 
de acordo com a CBRR (2016): 

• Recurso Mineral é uma concentração ou ocorrência de material sólido de interesse 
econômico dentro ou na superfície da crosta terrestre onde forma, teor ou qualidade e 
quantidade apresentem perspectivas razoáveis de extração econômica. 

• Recurso Mineral Inferido é aquela parte de um Recurso Mineral para o qual a quantidade 
e o teor ou a qualidade são estimados com base em evidências geológicas e amostragem 
limitadas. Evidências geológicas são suficientes para sugerir, mas não para atestar a 
continuidade geológicas e o teor ou qualidade. Recurso Inferido tem um nível de 
confiabilidade mais baixo do que aquele que se aplica a um Recurso Mineral Indicado e 
não deve ser convertido para Reserva Mineral. É razoável esperar que a maioria dos 
Recursos Minerais Inferidos possa ser convertida em Recursos Minerais Indicados com a 
continuidade da exploração.  

• Recurso Mineral Indicado é a parte de um Recurso Mineral para o qual a quantidade, o 
teor ou qualidade, a densidade, a forma e as características físicas são estimadas com 
confiabilidade suficiente para permitir a aplicação de Fatores Modificadores em detalhe 
suficiente para embasar o planejamento de mina e a avaliação da viabilidade econômica 
do depósito. Evidências geológicas são derivadas de exploração, amostragem e testes 
com detalhamento adequado e são confiáveis e suficientes para assumir a continuidade 
geológica e o teor ou qualidade entre os pontos de observações. Recurso Mineral Indicado 
tem um nível mais baixo de confiabilidade do que o aplicado a um Recurso Mineral Medido 
e pode ser convertido apenas em Reserva Mineral Provável. 

• Recurso Mineral Medido é a parte de um Recurso Mineral para a qual a quantidade, o teor 
ou qualidade, as densidades, as formas e as características físicas são estimadas com 
confiança o suficiente que permitam a aplicação dos Fatores Modificadores para embasar 
o planejamento de mina detalhado e uma avaliação final de viabilidade econômico do 
depósito. Evidências geológicas são derivadas de exploração, amostragem e testes 
detalhados e confiáveis são suficientes para confirmar a continuidade geológica e o teor 
ou qualidade entre os pontos de observações. Recurso Mineral Medido tem um nível mais 
alto de confiabilidade do que aquele aplicado tanto a um Recurso Mineral Indicado quanto 
a um Recurso Mineral Inferido. Ele pode ser convertido em Reserva Mineral Provada ou 
em Reserva Mineral Provável. 
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Anexo 2 
 

Modelo teórico de Variograma para variável Ferro 

 
Figura A1- Modelo teórico de variograma para os dados gaussianos da variável ferro para a direção de 45°/0° 
(A), 135°/0° (B) e 0°/90° (C). 
 
 Modelo teórico de Variograma para variável alumina 

 
Figura A2- Modelo teórico de variograma para os dados gaussianos da variável alumina para a direção de 45°/0° 
(A), 135°/0° (B) e 0°/90° (C). 
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Anexo 2 

 Modelo teórico de Variograma para a variável fósforo 

 
Figura A3-Modelo teórico de variograma para os dados gaussianos da variável fósforo para a direção de 45°/0° 
(A), 135°/0° (B) e 0°/90° (C). 
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Anexo 3 
 
Tabela A1- Modelo Teórico de variograma para dados amostrais das variáveis Fe, Al2O3  e P. 

Fe 

Efeito 
Pepita 

0,05 
          

Estrutura  
Amplitude 

U (m) 
Amplitude 

V (m) 
Amplitude 

W (m) 
Variância 
Espacial  

Modelo 
Direção de 
Rotação  

1°Estrutura  400 190 90 62,5 Esférico 135°/0° 

2°Estrutura  - - 90 4 Esférico 135°/0° 

Al2O3 

Efeito 
Pepita 

0,05 
          

Estrutura  
Amplitude 

U (m) 
Amplitude 

V (m) 
Amplitude 

W (m) 
Variância 
Espacial  

Modelo 
Direção de 
Rotação  

1°Estrutura  420 120 50 1,5 Esférico 135°/0° 

2°Estrutura  620 120 - 0,6 Esférico 135°/0° 

3°Estrutura  620 - - 0,45 Esférico 135°/0° 

P 

Efeito 
Pepita 

0,05 
          

Estrutura  
Amplitude 

U (m) 
Amplitude 

V (m) 
Amplitude 

W (m) 
Variância 
Espacial  

Modelo 
Direção de 
Rotação  

1°Estrutura  300 207 100 0,0014 Esférico 135°/0° 

2°Estrutura  - 207 - 0,00015 Esférico 135°/0° 
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Anexo 4 
Modelo teórico de Variograma para dados amostrais da variável Ferro 

 

Figura A4-Modelo teórico de variograma dos dados amostrais da variável Fe (D) para a direção de 45°/0° 

(A), 135°/0° (B), 0°/90° (C). 

Modelo teórico de Variograma para dados amostrais da variável Alumina 

 

Figura A5-Modelo teórico de variograma dos dados amostrais da variável Al2O3 (D) para a direção de 45°/0° 

(A), 135°/0° (B), 0°/90° (C). 
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Anexo 4 
Modelo teórico de Variograma para dados amostrais da variável fosforo  

 

Figura A6-Modelo teórico de variograma dos dados amostrais da variável P (D) para a direção de 45°/0° (A), 135°/0° 

(B), 0°/90° (C). 

 


