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RESUMO

As classes de recursos minerais de uma classificacédo refletem o grau de confianca do
conhecimento do depdsito mineral, sendo que este grau de confianca pode ser obtido através da
incerteza associada a quantificacdo dos teores do depdsito. O objetivo deste estudo é classificar
os recursos de ferro da Mina de Capanema, baseado na incerteza associada a simulacdo
estocastica por bandas rotativas do ferro e de dois de seus contaminantes, a alumina e o fosforo.

A Mina de Capanema corresponde a um deposito do tipo formacao ferrifera bandada, que
sofreu distintos eventos deformacionais e esta localizada entre 0 municipio de Santa Béarbara e
Itabirito, no Quadrilatero Ferrifero, estado de Minas Gerais.

Para quantificar as incertezas foram utilizados 100 cenarios para cada variavel analisada,
com isso foi possivel quantificar a incerteza da simulagao através do intervalo de confianga da
média padronizado. Com a comparacédo das incertezas das trés variaveis analisadas, concluiu-
se que como a incerteza € diretamente relacionada ao nivel de variabilidade que variavel
apresenta, sua utilizacdo em depdsitos com baixa variabilidade pode ndo ser adequado.

Com os resultados obtidos neste trabalho, pode-se afirmar que para depdsitos pouco
heterogéneos como o da Mina de Capanema, ndo € aconselhavel que a classificacdo seja
realizada através da incerteza quantificada pelo intervalo de confianca da média, visto que
praticamente a totalidade dos blocos foram classificados como medido, tal fato ndo é factivel,
pois espera-se que nas bordas de um depdsito e lugares onde a amostragem nao seja

representativa tenha a presenca de blocos classificados como indicado e inferido.



ABSTRACT

The types of the mineral resources in a classification reflect the degree of confidence of
the knowledge of the mineral deposit, and this degree of confidence can be obtained through the
uncertainty associated with the quantification of deposit contents. The objective of this study is to
classify the iron resources of the Capanema Mine based on the uncertainty associated with
stochastic simulation by turning bands of iron and two of its contaminants, aluminum and
phosphorus.

The Capanema Mine corresponds a banded iron formation deposit, which suffered
different deformation events and is located between the cities of Santa Barbara and Itabirito, in
the Quadrilatero Ferrifero, state of Minas Gerais.

To quantify the uncertainties were 100 scenarios used for each variable analysis, with
this it was possible to quantify the uncertainty of the simulation through the confidence interval of
the mean. By comparing the uncertainties of the three analyzed variables, it was concluded that
as the uncertainty is directly related to the level of variability that the variable presents, its use in
deposits with low variability may not be adequate.

The results obtained in this work, it can be stated that for non-heterogeneous deposits
such as the Capanema Mine are not advisable to classify the uncertainty quantified by the
confidence interval of the mean. All the blocks were classified as measured, this fact is not
feasible, because it is expected that on the edges of a deposit and places where the sampling is

not representative has the presence of blocks classified as indicated and inferred.
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1. INTRODUCAO

Diariamente acfGes do setor mineral sdo negociadas nas principais bolsas de valores
entdo, com a finalidade de atrair investidores e evitar fraudes, as empresas do setor de mineracao
divulgam declara¢des publicas com informacdes oficiais sobre a quantidade estimada de
recursos e reservas de um deposito (Rossi e Deutsch, 2014). Em cada pais tais declaracfes
seguem padrdes estabelecidos por codigos, sendo os principais 0 JORC, NI 43-101 e SAMREC
(Rossi e Deutsch, 2014).

Esses cddigos determinam que as declarac¢des publicas contenham a classificacdo de
recursos, que deve ser realizada de acordo com o conhecimento e confianca dos dados
geoldgicos obtidos, ou seja, as classes de recursos irdo refletir o quanto o teor e a tonelagem do
recurso estimado séo confiaveis (CBRR, 2016). A incerteza associada a estimativa é uma forma
de determinar se o teor e a tonelagem do recurso estimado sao confiaveis, ou seja, quanto menor
a incerteza mais confidvel é a declaracdo de recursos. Nas declaracbes publicas deve-se
apresentar uma discussdo das incertezas dos recursos, assim como elas devem ser
consideradas para determinar as classes de recursos (CBRR, 2016).

Todas as estimativas de recursos apresentam incerteza associada devido a diversos
fatores como amostras néo representativas do depésito, imprecisdo dos dados, falta de dados,
incerteza dos modelos geoldgicos, aplicacdo incorreta dos métodos matematicos entre outros
(Rossi e Deutsch, 2014).

Uma forma de obter um modelo de incerteza do deposito mineral é pela simulagéo
estocastica, pois nela varios modelos equiprovaveis da realidade sdo gerados, sendo que a
incerteza é obtida através da dispersdo dos diversos modelos (Abzalov, 2016). Porém as
simulacdes estocésticas ndo abrangem todas as fontes de incerteza a que as estimativas estéo
sujeitas (Rossi e Deutsch).

Neste trabalho, a classificacéo de recursos de ferro da Mina de Capanema sera realizada
com base na incerteza da simulag&o estocastica por bandas rotativas do ferro e de dois dos seus
contaminantes, o fésforo e a alumina, sendo que a quantificacdo da incerteza dos modelos

gerados sera realizada pelo intervalo de confianca da média



2. OBJETIVOS E JUSTIFICATIVA

O objetivo deste trabalho é a quantificacdo dos teores de Fe, P e Al.Os e correspondente
incerteza para a classificacdo dos blocos em recursos inferidos, indicados e medidos. A incerteza
sera guantificada pelo intervalo de confianca da média, calculado a partir do desvio padrdo da
simulacao estocdstica por bandas rotativas.

Justifica-se a classificacdo dos recursos de ferro a partir das incertezas do préprio e de
dois de seus contaminantes, porque como recurso € definido como ocorréncia/concentracdo de
material sélido com perspectiva de extracdo econémica (CBRR, 2016) e como teores altos de
contaminantes podem afetar esta perspectiva, é sensato pensar na classificacdo de recursos

minerais considerando-se também os contaminantes.

3. LOCALIZACAO E VIA DE ACESSO

A Mina de Capanema esta localizada entre os municipios de Santa Barbara e Itabirito, na
regido do Quadrilatero Ferrifero (Figura 1). O acesso da mina a partir de Belo Horizonte ocorre
pela BR-040 até o trevo para Ouro Preto e em seguida através da rodovia BR-356 até chegar a
Itabirito, onde ha o trevo de acesso a Capanema.
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Figura 1- Mapa do Quadrilatero Ferrifero com destaque em vermelho da localizagdo da Mina de Capanema. Retirado
de Oliveira Jr. (2006).



4. TRABALHOS PREVIOS
4.1. Geologia Regional

O Quadrilatero Ferrifero situa-se no extremo sul do Craton do S&o Francisco, que
compreende um nucleo cratdénico cercado por cinturBes tectonicos relacionados a orogénese
Brasiliana (Almeida, 1977).

A litoestratigrafia do Quadrilatero Ferrifero, da base para o topo, € composta por:

e Embasamento cristalino: unidade constituida por rochas arqueanas que ocorrem em
forma de domos (Rossi, 2014). Esta unidade é composta por gnaisses de composi¢ao
TTG (Tonalito-Trondhjemito-Granodiorito) (Noce, 1995), metamorfizados em facies
anfibolito médio a superior (Rossi, 2014). Nesta unidade ocorrem intrusdes anfiboliticas e
de granitéides potassicos (Lana et al., 2013).

e Supergrupo Rio das Velhas: compreende uma sequéncia do tipo Greenstone Belt de idade
arqueana (Zucchetti et al., 2000). A sequéncia é composta por rochas maficas e
ultraméficas, rochas vulcanoclasticas e rochas sedimentares (Zucchetti et al., 2000). O
Supergrupo Rio das Velhas tem paragéneses metamoérfica de facies xisto verde alto a
anfibolito (Rossi, 2014). O supergrupo Rio das Velhas € dividido estratigraficamente, da
base para o topo, em:

e Grupo Nova Lima: caracterizado por komatiitos, formacdes ferriferas bandadas,
pelitos, metagravaucas e arenitos (Baltazar e Zucchetti, 2007).

e Grupo Magquiné: constituido por quartzitos, metarenitos, xistos, filitos e
metaconglomerados (Angeli, 2015).

e Supergrupo Minas: corresponde a uma sequéncia metassedimentar de idade
paleoproterozdica (Alkmim e Marshak, 1998). Em sintese,0 supergrupo é formado por
guartzitos, metaconglomerados, metapelitos e formacdes ferriferas bandadas (Rosiére e
Chemale Jr, 2000). As rochas desta unidade estdo metamorfizadas na facies xisto-verde
alto a anfibolito (Rossi, 2014). O Supergrupo Minas é dividido, da base para o topo, em:

e Grupo Tamandua: composto por quartzitos, conglomerados, xistos e filitos (Dorr,
1969).

e Grupo Caraca: formado por conglomerados, quartzitos e metapelitos (Rosiére e
Chemale Jr, 2000).

e Grupo Itabira: constituido por itabiritos, dolomitos ferruginosos e filitos hematiticos
(Rosiére e Chemale Jr, 2000).

e Grupo Piracicaba: composto por filitos carbonaticos, filitos ferruginosos, dolomitos,
marmores estromatoliticos, formacfes ferriferas bandadas e metarenitos

ferruginosos intercalados com filitos (Rosiére e Chemale Jr, 2000).
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e Grupo Sabard: compreende metagrauvacas, metadiamictitos, tufos

metavulcanitos acidos a intermediarios associados a filitos carbonosos e

formacdes ferriferas bandadas (Rosiere e Chemale, 2000).

e Grupo Itacolomi: unidade mesozoica (Noce, 1995), constituida por arenitos,
metaconglomerados e filitos (Dorr, 1969).
Segundo Chemale Jr et al. (1994) a evolucdo tectbnica do Quadrilatero Ferrifero se deu

por meio de dois eventos deformacionais principais, o primeiro ocorreu durante o Orogénese
Transamazébnica (2,1 - 2,0 Ga) que resultou na forma démica do embasamento cristalino e
produziu sinclinais regionais nas supracrustais. O segundo evento de idade Brasiliana (0,8-0,6
Ga) ocasionou a inversao, amplificacéo, translagéo e rotagédo dos sinclinais.
A Figura 2 corresponde ao mapa geologico do Quadrilatero Ferrifero.
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Figura 2- Mapa Geologico do Quadrilatero Ferrifero. Retirado de Farina et al (2016).

4.2. Geologia Local
A mina de Capanema esté situada no flanco sudeste do Sinclinal de Ouro Fino (Fonseca,
2014), uma megaestrutura do Quadrilatero Ferrifero que sofreu distintos eventos deformacionais
(Franco e Endo, 2004).
Segundo Fonseca (2014), a litoestratigrafia da mina é constituida, da base para o topo,

por: quartzitos pertencentes a Formacdo Moeda e Maquiné, filitos pertencentes a Formacao
4



Batatal, itabiritos compactos, itabiritos silicosos e fridveis sobrepostos por itabiritos goethiticos e
anfiboliticos da Formacgéo Caué. Cortando essas litologias ocorrem diques de rochas méficas.

O minério de ferro da Mina de Capanema esta inserido na Formacdo Caué (Fonseca,
2014), que corresponde a uma formacao de idade proterozébica constituida por itabiritos, itabiritos
dolomiticos e itabiritos anfiboliticos (Dorr, 1969). O minério da Mina tem como mineral de minério
a Hematita, que ocorre em camadas continuas ou em lentes com espessura variando entre 10 a
30 m (Fonseca, 2014). A hematita quando ocorre proximo a superficie apresenta maior teor de
contaminantes, como o fésforo e alumina, e menor teor de ferro (Fonseca, 2014).

Os itabiritos da mina de Capanema podem ser divididos em trés tipos em relacdo a
guantidade de ferro (Fonseca, 2014):

o Itabiritos pobres: com teores de ferro inferior a 50%;

o [tabiritos ricos: com teores de de ferro superiores a 50%;

» ltabiritos goethiticos ou anfiboliticos: com teores de ferro entre 55% a 60%, porém
com altos teores de contaminantes. Esse tipo de itabirito ocorre sobre os itabiritos
ricos.

Segundo Fonseca (2014), a canga da mina é formada por laterita constituida por grande
quantidade de goethitas e limonitas (hidroxidos de ferro) e com altos teores de contaminantes,

como fésforo e alumina.

4.3. Regularizagdo das amostras

Geralmente, as amostras apresentam diferentes tamanhos ao longo do furo de sonda,
porém para realizar a estimativa € necessario que as amostras apresentem o mesmo suporte
amostral, deste modo héa a necessidade da regularizagcdo das amostras (Abzalov, 2016).

Para lavra a céu aberto, a regularizacdo das amostras € realizada de modo que as
amostras tenham comprimentos compativeis com altura da bancada (Yamamoto e Rocha, 2001;
Rossi e Deutsch, 2014), com finalidade de adequar a escala de amostragem a escala de trabalho
(Yamamoto e Rocha, 2001).

Ainda segundo Yamamoto e Rocha (2001), a regularizacdo das amostras € realizada

conforme:

1)
Onde t, é o teor composto para o intervalo de trabalho, t; é o teor do i-ésimo trecho amostral e

e; a espessura do i-ésimo trecho.



4.4. Andlise Estatistica

Através da analise estatistica € possivel resumir os dados, analisar a variavel de interesse
e o depodsito mineral e identificar valores atipicos (outliers), com isso, permite um melhor
entendimento dos dados (Rossi e Deutsch, 2014). Nessa analise sdo calculadas as medidas de
tendéncia central, como média, mediana e moda; medidas de dispersdo, como variancia, desvio
padréo e coeficiente de variacdo e; na representacdo grafica da variavel, através do histograma
(Yamamoto et al., 2001).

4.5. Analise Geoestatistica
Para aplicagdo dos métodos geoestatisticos é necessario que as variaveis sejam
regionalizadas, isto é, uma funcdo que define o valor da varidvel em um ponto no espaco
(Abzalov, 2016). Segundo Matheron (1963), a variavel regionalizada apresenta as seguintes
caracteristicas qualitativas:
e Localizagdo: a variavel possui uma posicao no espaco, sendo que a variavel pode variar
dentro do campo geométrico regionalizado, ou seja, o depdésito.
e Suporte: corresponde ao volume, a forma, tamanho e orienta¢cdo da amostra.
o Continuidade: a variavel deve apresentar continuidade espacial, ou seja, amostras mais
distantes apresentam maior variancia espacial do que amostras mais proximas.
e Anisotropia: refere-se a diferentes comportamentos espaciais para diferentes direcoes.

Outro conceito importante relacionado a variavel regionalizada refere-se a hipétese
intrinseca, que assume que a variancia espacial entre duas amostras € a mesma em todo o
dominio e que seu valor s6 depende da distancia e orientagdo das amostras. O comportamento
espacial pode ser quantificado pela funcdo semivariograma (Yamamoto, 2001), que pode ser
descrita como (Abzalov, 2016):

y(h) = 55 S [2(x) — 2(xi + )2 @
onde y(h) é a variancia espacial, N € o numero de pares de pontos separados por uma distancia
h, z(x;) é o valor da variavel regionalizada no ponto x, z(x; + h) é o valor da variavel regionalizada
no ponto x + h.

Através das propriedades de um semivariograma € possivel entender o comportamento
espacial da variavel regionalizada (Yamamoto, 2001), sendo que suas principais caracteristicas
séo:

o amplitude, refere-se a distancia maxima onde as amostras apresentam correlacao

espacial (Abzalov, 2016);

o efeito pepita, é o valor da variancia espacial préximo a origem (Abzalov, 2016);

e patamar, o valor da variancia espacial onde o variograma estabiliza (Abzalov, 2016);
6



e variancia espacial é dada pela diferenca entre o valor do patamar e do efeito pepita

(Yamamoto, 2001).
Representa-se na Figura 3 um semivariograma tipico com patamar e suas caracteristicas.

y(h

Patamar

Efeito Pepita

hvd h
Amplitude
Figura 3- Semivariograma e suas propriedades. Retirado de Abzalov (2016).

Através do calculo do variograma em diferentes direcbes é possivel identificar se o
dominio € isotrépico ou anisotropico, isto é, quando a variavel apresenta 0 mesmo
comportamento espacial em diferentes dire¢des, entdo o dominio € isotrépico, porém quando o
comportamento espacial varia para diferentes direcées, nesse caso o dominio é anisotropico
(Yamamoto e Landim, 2013). Para reconhecer anisotropia € necessario fazer a analise
exploratéria que consiste em calcular o variograma em quatros diregdes (0°, 45°, 90°, 135°)
guando o dominio & 2D e em cinco dire¢gdes (0°/0°, 45°/0°, 90°/0°, 135°/0° e 0°/90°) para dominios
3D.

Segundo Yamamoto e Landim (2013), os tipos de anisotropias existentes sao:

e Geométrica: quando o variograma apresenta diferentes amplitudes para diferentes
dire¢cdes, mas com Unico patamar;
e Zonal: quando o variograma apresenta diferentes patamares para diferentes direcoes,
porém com a mesma amplitude;
e Mista: quando o variograma apresenta amplitudes e patamares diferentes para diferentes
direcOes.
Retrata-se na Figura 4 0s diferentes tipos de anisotropia.

A) B) C)
A = .
r r= =
= = =
a & h ata h & e

Figura 4- Representacéo das anisotropias existentes. A) Variograma com anisotropia geométrica. B)Variograma com
anisotropia zonal. C) Variograma com anisotropia mista. Retirado de Yamamoto (2001).
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O variograma experimental é uma funcéo discreta, pois representa o valor da variancia
espacial apenas para determinadas distancias (Abzalov, 2016). Porém para realizar estimativa
ou a simulacao, € necessario conhecer o valor da variancia espacial para todas distancias e para
todas dire¢bes, assim surge a necessidade de ajustar o variograma, ou seja, ajustar uma funcao
matematica continua que descreva o comportamento espacial da varidvel (Rossi e Deutsch,
2014). Retrata-se na Figura 5 a forma do variograma de acordo com a fungéo utilizada para o
ajuste. Segundo Abzalov (2016), os modelos de variogramas mais usados, sao:

3
o Esférico: y(h) =Cy+C [% + %] quando 0 < |h| < a
y(h)=Co+C quando |h| > a @)
; ZIhl
o Exponencial: y(h) = Cy + C [1 —exp a ] @)
: =2
e Gaussiano: y(h)=Cy+C [1 — exp @ ] ©)

sendo C, o efeito pepita, C a variancia espacial (diferenca entre patamar e efeito pepita), a

corresponde a amplitude e h € a distancia de separacao entre pontos.

N
J

Variograma

Variograma

Variograma

o

o
®
|

AN
AN
°
®
|
N

°
1
™

|
N
™~
~
= l“
~
~
o
4
1
\\

a
=
°
5

Distancia (ft) Distancia (ft) Distancia (ft)

Figura 5- Representa os principais modelos de semivariograma. A) Modelo Esférico. B) Modelo Exponencial.
C)Modelo Gaussiano. Retirado de Rossi e Deutsch (2014).

Segundo Yamamoto (2001), a definicdo dos parametros de vizinhanca é de grande
importancia para a realizacdo da krigagem e da simulacéo, pois é a partir desses parametros que
ocorre a escolha de amostras que serdo utilizadas para estimar ou simular um ponto ou bloco
ndo amostrado. A definicho dos parametros de vizinhanca deve garantir uma boa
representatividade espacial para evitar que ocorra a escolha de amostras agrupadas em uma
Unica regiao.

Os critérios de selecdo consistem em dividir a regido do ponto que sera estimado em
quatro ou oito setores, ou seja, por quadrante ou octante, dessa forma as amostras escolhidas
estardo mais bem distribuidas espacialmente (Yamamoto, 2001). Na Figura 6A, mostra-se a

selecdo de amostras usando somente o critério da distancia, que consiste na sele¢cdo de amostras



mais préximas do ponto que sera estimado, na Figura 6B a selecdo de amostras foi feita por

gquadrantes e na Figura 6 C foi realizada por octantes.
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Figura 6- Comparacao de diferentes modos de selecionar amostras. A) Sele¢do das amostras realizada levando em
consideracdo somente a distancia entre as amostras. B) Selecdo das amostras realizada por quadrantes. C)Selecéo
das amostras realizada por octantes. Retirado de Yamamoto (2001).

Além de escolher o critério para a selecéo das amostras, € importante definir a quantidade
de amostras que sera utilizada para estimar o ponto, pois com uma pequena quantidade de
amostras o ponto estimado tendera ao valor das amostras escolhidas, por outro lado para uma
grande quantidade de amostras o ponto estimado tenderd a média das amostras, assim é
aconselhavel o uso de oito amostras (Yamamoto, 2001), porém esse numero € melhor definido
testando-o na validacdo cruzada.

A validagcdo cruzada € uma técnica usada para definir os melhores parametros de
vizinhanca a ser utilizado e para aferir o ajuste do modelo te6rico de semivariograma. Essa
técnica consiste em estimar um ponto amostral eliminando-o da base de dados, sendo que a
estimativa é baseada nas outras amostras da base de dados. Este processo € realizado até que
todas as amostras do dominio tenham sido visitadas, com isto serd possivel avaliar os erros
associados as estimativas das amostras (z*(x;) — z(x;)), visto que é conhecido o valor da
amostra (z(x;)) e seu valor estimado (z*(x;)) (Rossi e Deutsch, 2014).

Através do grafico de dispersdo dos valores reais das amostras em funcdo dos valores
estimados, como se mostra na Figura 7, é possivel avaliar a validacdo cruzada, ou seja, 0
resultado da validacéo cruzada serd melhor quando os pontos estiverem alinhados em uma reta
com coeficiente angular proximo a 1 e com maximo valor de coeficiente de correlacdo (Deutsch,
2002)



Valor Real

4.0

.0 4.0 8.0 12.0 16.0 20.0

Valor Estimado

Figura 7- Representacdo de um resultado de validagédo cruzada. Retirado de Rossi e Deutsch (2014).

4.6. Simulacéo Estocéstica

Através da simulagdo estocastica € possivel obter varios modelos equiprovaveis de um
depdsito mineral (Abzalov, 2016), sendo que cada modelo gerado corresponde a uma imagem
estocastica (Deutsch e Journel, 1998).

Diferentemente da estimativa realizada por krigagem que apresenta precisdo local, os
modelos gerados pela simulagcdo possuem precisdo global, consequentemente a simulagéo ndo
apresenta o efeito de suavizagdo que ocorre na krigagem, ou seja, a simulacdo estocastica nao
superestima valores baixos e ndo subestima valores altos (Rossi e Deutsch, 2014). Porém os
modelos gerados pela simulacdo apresentam, em média, maiores erros do que a estimativa feita
por krigagem (Olea, 1999). Entdo, a escolha entre krigagem e simulagéo deve ser feita no que é
mais importante: a continuidade espacial dos dados (obtida pela simulacdo) ou menores erros
em estimativas locais (obtida pela krigagem) (Olea, 1999).

A simulacéo estocastica pode ser condicional ou ndo condicional, isto €, quando o ponto
simulado coincidir com o ponto amostral e receber o valor da amostra entdo a simulacéo é dita
condicional, porém se o ponto receber um valor aleatério a simulacao € dita ndo condicional
(Chilés e Delfiner, 1999). Rossi e Deutsch (2014) ressaltam que as simulagfes condicionais sdo
usadas para quantificar a incerteza para classificacdo de recursos. A quantificacdo da incerteza
€ possivel, pois os modelos gerados na simulacdo condicional apresentam diferencas entre si,
apesar de possuirem o mesmo histograma e variograma amostral (Abzalov, 2016). Assim a
incerteza € determinada pela andlise estatistica das diferencas existentes entre o0s
modelos, sendo que a incerteza sera maior quando os dados amostrais apresentarem maior

variabilidade entre si e a quantidade de amostras for relativamente pequena (Abzalov, 2016).
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4.6.1. Simulagéo por bandas rotativas

A simulacéo por bandas rotativas foi o primeiro método de simulacdo em trés dimensofes

(Rossi e Deutsch, 2016). O método consiste em estimar um ponto em trés dimensfes através

véarias simulacfes unidimensionais ao longo de linhas, ou seja, o ponto simulado em 3D sera a

soma de suas projecBes em pontos nas linhas. O condicionamento do método é realizado por

duas krigagem (Olea, 1999). O algoritmo da simulac&o por bandas rotativas, pode ser descrito
como (Olea, 1999):

Transformar a distribuicdo Z(x) para uma distribuicdo gaussiana, ou seja, para uma
distribuicdo gaussiana com média igual a zero e variancia igual a um.

Realizar a analise geoestatistica com finalidade de obter o melhor ajuste do modelo
tedrico de variograma para os dados transformados.

Derivar a covariancia Cov.[h] através do modelo teérico de variograma, que as realizacdes
das linhas devem ter, com objetivo para gerar realizagcbes de processos multidimensionais
com covariancia Cov.[h].

Gerar as realizacdes de cada linha, sendo que ao longo de cada linha as realizacbes
apresentaram a mesma covariancia Cov.[h]. Nesta etapa, as linhas sao definidas em torno
de um ponto central, formando uma esfera de raio unitario.

Somar as contribuicbes das linhas de realizacbes para produzir as simulagbes
multidimensionais Z, (x;). Nesta etapa, o espaco sera particionado em bandas de largura
X, através de planos perpendiculares as linhas, estes planos sdo gerados entre cada uma
das N realizacdes ao longo da linha u,. O ponto simulado sera a soma das bandas que

estao contidas neste ponto. O esquema desta etapa esta ilustrado na Figura 8.

Figura 8- llustragdo da simulagdo por turning bands em duas direcdes, como pode ser observar o espaco foi

particionado em bandas e o valor simulado sera a soma das bandas contidas nele. Retirado de Olea (1999).
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e Realizar o condicionamento da simulagéo, pois 0 método por bandas rotativas resulta em
valores que nao honram os dados amostrais. Caso ndo haja necessidade do
condicionamento, pule-se essa etapa.

O condicionamento dos dados € realizado através de duas krigagem sendo realizadas
nos dados amostrais transformados e para dados simulados. O processo de
condicionamento é realizado quando os pontos simulados coincidirem com 0s pontos
amostrais, com isso os valores simulados ndo condicionais sédo trocados pelos valores
das amostras. A realizacdo das krigagens tem como objetivo suavizar a mudanca entre
os valores das amostras e os valores simulados ndo condicionais, sendo que iSso ocorre
somente proximo as amostras (Rossi e Deutsch, 2014). O condicionamento é feito por:
Zsc = Zg t Zg — Zgs (6)
sendo z,. 0 valor da simulagdo condicional, z; o valor da krigagem utilizando os dados
amostrais transformados, z; o valor da simulagdo ndo condicional e z,, o valor da

krigagem utilizado o valor dos dados simulados n&o condicionais.

4.7. Krigagem simples
Na simulacdo por rotacdo de bandas, o condicionamento dos dados é realizado por
krigagem simples (Emery e Lantuéjoul, 2006), que € um método de estimativa condicional, ou
seja, se o0 ponto estimado coincidir com o ponto amostral, o valor do ponto sera o valor da amostra
(Rossi e Deutsch, 2014). A krigagem simples corresponde a uma estimativa linear ponderada que
necessita do conhecimento da média populacional da variavel de interesse (Abzalov, 2016),
sendo gque seu objetivo é determinar um conjunto de pesos, que minimizam a variancia do erro
(Rossi e Deutsch, 2014). O ponto estimado por krigagem é calculado por (Rossi e Deutsch, 2014):
Zis(x0) = m(xo) + Xiz1 A [Z(x; — m(x;)] )
onde Z¢(X,) corresponde o valor do ponto estimado, Z(x;) corresponde o valor das amostras
utilizadas para estimativa, m(x,) corresponde a média populacional, m(x;) corresponde a média
amostral e A; corresponde ao peso de cada amostra usada para a estimativa. Vale ressaltar, que
0 peso de cada amostra é obtido pela resolucdo de um sistema de equacdao lineares, conforme

(Yamamoto e Landim, 2013) :
Cx1—x) CQx1—x) ... CQxy—xp) C (%o — x1)
C (xz_— x1) C(xz - x3) .. C (xn - xz)\ l ‘ lc (xo - X3) ®)
Cltn—21) COm—%) w0 € (%)

onde C(x; — x;) € a covariancia entre duas amostras, 1; € o peso de cada amostra e C(x, — x;) €

C (xO - xn)

a covariancia entre o ponto estimado e o n-ésimo ponto amostral, com i= 1, ..., n.
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4.8. Anamorfose Gaussiana

A transformacédo dos dados pode ser feita através da funcdo anamorfose gaussiana, que
conforme Wackernagel (2003) é:

Z=¢(Y) ©)
onde ¢~! é uma funcdo n&o linear, sendo bijetora que estabelece a relagéo entre uma variavel
aleat6ria Z e uma variavel aleatéria gaussiana Y.

Porém quando a distribuicdo acumulada da variavel aleatéria Z é representada por uma
funcdo em degrau (F(Z2)), a transformacéo dos dados néo sera possivel, pois F(Z) faz com que
»~! ndo seja bijetora. Neste caso, a transformacédo dos dados é realizada em uma funcédo
suavizada composta por polindomios de Hermite (Wackernagel, 2003).

Segundo Wackernagel (2003), a funcdo anamorfose gaussiana com os polinbmios de
Hermite é bijetora no intervalo definido entre o valor minimo e maximo das amostras da
distribuicdo acumulativa da variavel Z, assim, é possivel realizar a transformacdo dos dados. A
seguir a fungdo anamorfose gaussiana com polinbmios de Hermite & escrita como (Rossi e
Deutsch, 2014):

z(w) = d(y(w) = Yoo PpHy (v(w)) (10)
onde @, corresponde ao coeficiente de cada termo do polindmio, e Hp(y(u))corresponde 0s

polinbmios de Hermite.

4.9. Teste de Bigaussianidade

Para comprovar a hipétese de multigaussianidade dos dados, é necessario realizar um
teste que comprove tal caracteristica, porém trata-se de um processo complexo, sendo mais facil
realizar o teste de bigaussianidade (Yamamoto e Chao, 2009), que compreende em averiguar se
a distribuicdo entre dois pontos transformados Z(x) e Z(x+h), X, h € normal (Deutsch e Journel,
1998). Caso o teste de bigaussianidade for positivo entdo assume-se que os dados sao
multigaussianos (Yamamoto e Chao, 2009).

Segundo Rocha et al. (2017), o teste de bigaussianidade pode ser realizado através de
um grafico de dispersao entre os pontos transformados de Z(X) versus Z(x+h), se os dados forem

bigaussianos, entdo o gréafico de dispersao gerado néo ira apresentar a uma distribui¢éo linear.

4.10. Intervalo de Confianga da média
Devido a varios fatores como amostras ndo representativas, variabilidade do depdsito,
aplicacdo incorreta dos métodos matematicos, falta de conhecimento para determinar os

parametros para a estimativa entre outros, toda estimativa apresenta uma incerteza (Rossi e
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Deutsch, 2014), consequentemente possui erro associado. Através de técnicas estatisticas
estatistica é possivel quantificar a incerteza do modelo estimado (Rossi e Deutsch, 2014), ou
seja, determinar um intervalo de valores onde o valor real da variavel de interesse possa estar
contido (Dubois e Prade, 2000). Porém o valor do erro s6 sera conhecido em certos locais onde
ocorreu a aquisicao de dados (Rossi e Deutsch, 2014), pois o erro corresponde a diferenca entre
o valor estimado e o valor verdadeiro (Bardossy e Fodor, 2004).

A incerteza da estimativa pode ser determinada através do intervalo de confianca da
média. Esse intervalo pode conter a média populacional, sendo obtido através da incerteza da
média amostral (Pinheiro et al., 2012).0 nivel de confianca determina a probabilidade do
parametro u estar contido no intervalo (Pinheiro et al., 2012) ,por exemplo, quando o nivel de
confianca for igual a 95%, o intervalo de confian¢ca da média apresenta 95% de chance da média
populacional estar contida neste intervalo. A equagéo (11) representa o intervalo da confianga da
média (Larson e Farber, 2015):

s = s
X—tl_%ﬁSMSX‘Ftl_%ﬁ

onde: X é a média amostral; t,_« €oquartill— % da distribuicdo t com n — 1 graus de liberdade;
2

11)

correspondente ao nivel de confianga; n € o tamanho da amostra; s corresponde ao desvio padréo
amostral; u representa a média populacional.

Para obter o intervalo de confianga da média € preciso ter a distribuicdo da média amostral
,quando o desvio padrédo populacional é desconhecido a variavel média amostral comporta-se
como a distribuicdo t de Student para uma variavel aleatéria que é normalmente distribuida, ou
seja, para uma variavel que apresenta simétrica em torno da média e em forma de sino e area
sob a curva igual a um (Larson e Farber, 2015). A distribuicdo t de Student é simétrica e possuli
média, moda e mediana iguais a zero (Larson e Farber, 2015), ou seja, centrada em zero. Em
relag@o a distribuicdo normal a distribuicdo t € mais dispersa em torno de zero (Pinheiro et al,
2012).

A distribuicao t de Student é dependente do parametro graus de liberdade, que corresponde
ao numero de observacgdes que podem ser escolhidas livriemente (Mann e Lacke, 2010), assim o
valor desse parametro equivale ao tamanho da amostra menos um (Larson e Farber, 2015).
Segundo Larson e Farber (2015), distribuicdo t tende a distribuicdo normal com aumento dos
graus de liberdade. Representa-se na Figura 9 representa uma distribuicdo t com 14 graus de

liberdade, onde a area central apresenta 95% de chance de conter a média populacional.
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Figura 9- Distribuicéo t de Student para 14 graus de liberdade e com nivel de confianga de 95%. Retirado de Larson e
Farber, 2015.

Segundo Davis (1986), as estatisticas baseadas em variaveis com distribuicdo normal,
como o intervalo de confianca da média, podem ser usadas também em variaveis com
distribuicdo ndo normal, pois o teorema do limite central assegura que a média da distribuicdo
ndo normal tende a média da distribuicdo normal e também que a distribuicdo ndo normal tende
a distribuicdo normal com o aumento da quantidade de amostras.

Na maioria das referéncias bibliogréaficas, a semi-amplitude, que corresponde a metade
do intervalo de confianca da média, € denominada indevidamente como erro, pois a definicdo de
erro corresponde a diferenca do valor estimado e o valor verdadeiro do parametro, como o valor
verdadeiro ndo é conhecido, consequentemente ndo é possivel determinar o valor do erro
(Bardossy e Fodor, 2004). Entdo, o mais adequado seria 0 uso do termo incerteza, pois sua
defini¢céo refere-se um intervalo de valores onde valor real da variavel de interesse possa estar
contido (Dubois e Prade, 2000). A equacéo do termo incerteza, como pode ser observado em
Larson e Farber (2015) :

I= tl_%j—ﬁ (12)

onde: I corresponde a incerteza; t;_a« € o quartil 1 —% da distribuicdo t com n — 1 graus de

liberdade; s corresponde ao desvio padrao amostral; n € igual ao tamanho da amostra.

4.11. Classificagdo de Recursos Minerais

Com a finalidade de dar transparéncia aos investidores e evitar fraudes, surgiu a
necessidade da criacdo de guias para declaracdes publicas de resultados de exploracao,
recursos e reservas minerais (Rossi e Deutsch, 2014). O primeiro guia de grande relevancia foi
publicado em 1989, corresponde ao codigo JORC usado na Australasia (Abzalov, 2016), ndo
obstante surgiram outros de igual importancia como NI 43-101 no Canada, SAMREC na Africa
do Sul e SME nos EUA (Rossi e Deutsch, 2014).
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Os cdédigos apresentavam diferencas entre si, pois foram criados de acordo com a
necessidade de cada pais (Abzalov, 2016). Porém, com a globalizacéo e abertura dos mercados
verificou-se a necessidade de padronizar internacionalmente os guias, levando a criacdo do grupo
CMMI (Internacional Resources/Reserves Definitions Gruop), que posteriormente foi substituido
pelo CRIRSCO (Committee for Mineral Resources and Mineral Reserves) (Bertossi, 2011).

Os paises membros da CRIRSCO, como Brasil, Canada, EUA, Chile, Africa do Sul,
Austrdlia e outros (CBRR, 2016), apresentam seus guias em concordancia ao modelo
desenvolvido pela entidade, sendo esse modelo baseado no Cédigo JORC (AusIMM, 2012). Os
guias alinhados ao CRIRSCO determinam que as declaracfes publicas tenham trés principios
fundamentais, que séo:

e Transparéncia, exige que as informagfes contidas em uma declaracdo publica
devem ser suficientes, claras e sem ambiguidades para que o leitor tenha
compreenséo fiel do contetdo (CBRR, 2016).

o Materialidade demanda que informacbes sejam relevantes, para que 0S
investidores e seus consultores possam fazer um julgamento equilibrado e
fundamentado sobre o conteldo da declaracdo publica. Caso falte alguma
informacéo relevante deve ser justificado o motivo para tal auséncia (CBRR, 2016).

o Competéncia requer que a declaragdo publica seja realizada de acordo com o
trabalho de um profissional qualificado, experiente e que aja conforme codigo de
ética profissional (CBRR, 2016).

Em 2015, o Brasil tornou se membro da CRIRSCO, devido a iniciativa da Comissao
Brasileira de Recursos e Reservas (CBRR), que desenvolveu o guia para o pais (CBRR, 2016).
Nesse guia estabelece-se que 0s recursos minerais sejam divididos em classes nas declaracdes
publicas e que esta classificagcdo seja realizada de acordo com o conhecimento geoldgico e na
confiangca dos dados geoldgicos disponiveis, ou seja, conforme o aumento do nivel de
confiabilidade e conhecimento geolégico os recursos minerais sao definidos em inferido, indicado
e medido (CBRR, 2016). Quando a incerteza da estimativa for relativamente alta e ndo permitir
que seja realizado um estudo de viabilidade econdmica, entdo o recurso é classificado como
inferido (CBRR, 2016). Quando a incerteza da estimativa é suficiente para permitir um estudo de
viabilidade econdmica, entdo o recurso é classificado como indicado, ja quando a incerteza da
estimativa for relativamente baixa e permitir um estudo de viabilidade econémica com alto nivel
de confiabilidade, o recurso é classificado como medido (CBRR, 2016).

Os recursos minerais indicado e medido podem ser convertidos em reservas minerais
provavel e provada, de acordo com os fatores modificadores que afetam a extracéo, que podem

ser de aspectos econdmicos, ambientais, legais, governamentais entre outros (CBRR, 2016).
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Cabe destacar, que reserva € a parte economicamente lavravel do recurso mineral (CBRR, 2016).
Na Figura 10, representa-se 0 esquema para classificacdo de recursos e reservas minerais. As
terminologias das classes de recursos de acordo com CBRR podem ser observadas no Anexo
1.

Resultados de Exploracao

Recursos Minerais Reservas Minerais
Inferido
Aumento do nivel Indicado Provavel
de confiabilidade
e conhecimento
geoldgico
Medido Provada

....................................................................................................................

Consideragdes sobre lavra, processamento, metalurgia, infraestrutura,
economicidade, mercado, aspectos legais, ambientais, sociais e governamentais.

“Fatores Modificadores”

Figura 10- Sistema de classificagdo de recursos e reservas minerais. Retirado de CBRR, 2016.

Analisando essa terminologia percebe-se que as definicbes ndo apresentam os
procedimentos e metodologia para que se realize a classificagéo, isto, pode ser explicado pela
dificuldade de adotar um método que se aplique a todos os diferentes depdsitos minerais (Rossi
e Deutsch, 2014). Por consequéncia, a classificacdo fica sob responsabilidade Profissional
Qualificado (Rossi e Deutsch, 2014), que decide desde do melhor método para realizar a
estimativa até os critérios para determinar as classes de recursos (CBRR, 2016).

No Brasil, o termo Profissional Qualificado refere-se ao profissional associado a CBRR,
que possui pelo menos 10 anos de experiéncia profissional, sendo que pelo menos 5 anos de
experiéncia em um determinado tipo de depdsito mineral e na atividade por qual é responsavel
(CBRR, 2016). Esse profissional também deve ter 3 anos em Posi¢cdo de Responsabilidade, que
corresponde ao um cargo que a participacdo do profissional seja significativa e importante para

realizar a atividade pela qual é responsavel.
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Segundo Rossi e Deutsch (2014), quando a classificagdo dos recursos minerais é
baseada na incerteza da estimativa, normalmente o recurso sera medido quando a incerteza é
de no maximo 15% , o recurso serd indicado quando a incerteza for superior a 15% e inferior a
30% e por fim o recurso serd inferido quando a incerteza é no minimo 30%, sendo que o nivel de

confianca considerado igual a 90% .

5. MATERIAIS E METODOS

Para desenvolvimento desta monografia foi utilizado o programa Isatis e o Excel. Além
disso, 0 banco de dados utilizado é referente a Mina de Capanema.

Os métodos aplicados no desenvolvimento desta monografia consistem no tratamento de
dados (conferéncias da base de dados e regularizagdo das amostras), analise estatisticas e
geoestatistica, seguido pela simulacdo estocéstica por bandas rotativas e pelo intervalo de
confianca da média e, por fim, a classificagdo de recursos.

Vale ressaltar que para realizar a analise geoestatistica foi necesséario determinar os
seguintes parametros: campo geométrico, tamanho do passo, tolerancia do passo, numero de
passo e tolerancia angular. O campo geométrico corresponde a metade do dominio amostral para
cada direcdo analisada. O tamanho do passo consiste na distancia média entre as amostras na
direcdo analisada. A tolerancia do passo equivale a 50% do tamanho do passo, para que ndo
haja classe de distancia sem nenhuma informacdo e nem sobreposi¢cdo de informagfes nos
passos adjacentes. O nimero de passos corresponde ao valor da divisdo do campo geométrico
pelo tamanho do passo. A metade da diferenga entre as dire¢fes adjacentes corresponde a
tolerdncia angular, esse parametro é necessario para que o variograma contenha a variancia
espacial de todas as dire¢cfes. A tolerancia angular para o variograma de dire¢éo 0°/90° deve ser
um valor relativamente baixo para que nao ocorra interferéncia dos valores de furos vizinhos no

calculo do variograma experimental, entdo utilizou o valor de 20°.

6. RESULTADOS OBTIDOS E DISCUSSOES

6.1. Conferéncia da base de dados

A base de dados utilizada é composta por 71 furos de sondagem, totalizando 761
amostras, sendo que amostragem foi realizada preferencialmente alinhado em: NE-SW.

Inicialmente, foi realizada a conferéncia da base de dados, que consistiu em verificar a
presenca de erros, como falta de informacgdes (gap), sobreposicdo de informagdes (overlap),
valores atipicos (outlier) e outros, que pudessem causar problemas ou influenciar os resultados
das etapas posteriores.

Nesta conferéncia, foi verificado que os dados do furo CP-24 estavam duplicados e para

resolver esta situagéo, as informagdes duplicadas foram excluidas. Também foi constatado que
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o furo CP-62, apresentava espacos vazios em alguns dados de litologia e teores de Fe, Al;Os,
SiO;, P e PPC, entéo para estes espacos foram atribuidos o valor de -999, para indicar auséncia
de informacao. Nao foram reconhecidos erros de coordenadas, como pode ser observado pela

analise da Figura 11, pois todos os pontos estdo contidos na cava da mina e circunjacéncias.
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Figura 11- Localizagao dos furos de sonda da mina de Capanema.

Com todas as incoeréncias retiradas ou ajustadas, foi dado prosseguimento aos trabalhos.

6.2. Andlise Estatistica

A andlise estatistica, foi realizada, e essa que consistiu em calcular a média, mediana,
moda, desvio padrdo, variancia e coeficiente de variagdo. Esses parametros sado apresentados
na Tabela 1, e o histograma das variaveis Fe, Al,O3 e P, podem ser observadas na Figura 12.

Esta andlise teve como objetivo o melhor entendimento das variaveis e do depdsito mineral.

Tabela 1- Estatistica descritivas da varidvel Fe, Alz03 e P antes da regulariza¢do das amostras.

Variavel *N. Minimo Maéaximo Média Mediana Moda *D.P. Varidncia *C.V.
Fe 761 27,15 67,52 55,71 57,8 62 8,10 65,61 0,145
Al203 761 0,03 21,22 2,07 1,63 2 1,90 3,61 0,918
P 760 0,01 0,23 0,08 0,069 - 0,04 0,0018 0,555

*N. corresponde ao numero de amostras, D.P corresponde ao desvio padrdo e C.V. corresponde ao coeficiente de

variagao.

Analisando os histogramas percebe-se que a variavel Fe apresenta distribuicdo
assimétrica negativa, que corresponde a uma distribuicdo de baixa variabilidade, essa
caracteristica é evidenciada pelo valor baixo do coeficiente de variagdo que indica que os dados
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sdo homogéneos. A variavel Al,Os apresenta uma distribuicdo assimétrica positiva com a
presenca de outliers, indicando que variavel apresenta com alta variabilidade, fato evidenciando
também pelo alto valor de coeficiente de variacdo. A varidvel P apresenta uma distribuicdo
assimétrica positiva, que indica uma distribuicdo de média a alta variabilidade, consequentemente
possui alto valor de coeficiente de variacdo que indica dados heterogéneos. Comparando os
valores de coeficientes de variacdo e os histogramas, percebe-se que o nivel de variabilidade
aumenta na seguinte ordem: Fe, P e Al,Os,

Fe Al203

30 40 50 60 70 0 10 20

Frequéncia
Frequéncia

20

Al203

Frequéncia

Figura 12- Histogramas dos dados amostrados antes da regularizagao das amostras da variavel Fe (A), Al203(B) e P

©.

20



6.3. Regularizacdo das Amostras

Como os tamanhos das amostras variam de 0,10 a 71,90 metros, foi necessario realizar
a regularizacdo das amostras.

As amostras foram regularizadas para 13 metros, sendo correspondente a altura da
bancada da Mina de Capanema. Porém quando ndo foi possivel a regularizacdo para este valor,
a regularizacdo das amostras foi feita com o limite minimo igual a 10 metros, pois as variaveis
Al,O3 e P apresentam distribuicBes de alta variabilidade, assim ndo é aconselhavel que o limite
minimo seja muito diferente que o tamanho padrédo da regularizacao.

Apbs a regularizacdo das amostras, a andlise estatistica foi calculada novamente, para
conferir se a regularizacdo das amostras foi adequada. Na tabela 2 sdo apresentadas as
estatisticas descritivas apos a regularizacdo. Os histogramas das variaveis depois da
regularizagédo das amostras sdo apresentados na Figura 13.

Tabela 2- Estatisticas descritivas da varidvel Fe, Al203 e P depois da regulariza¢cdo das amostras.

Variavel *N. Minimo Maximo Média Mediana Moda *D.P Variancia *C.V

Fe 332 27,15 66,80 55,77 57,63 42,11 7,68 59,048 0,138
Al203 332 0,16 15,33 1,91 1,54 1 1,64 2,677 0,856
P 330 0,01 0,21 0,07 0,07 0,05 0,04 0,0015 0,515

*N. corresponde ao numero de amostras, D.P corresponde ao desvio padrédo e C.V. corresponde ao coeficiente de
variacao.

Analisando as Tabelas 1 e 2, observa-se que o valores da variancia para as trés variaveis
diminuiram com a regularizagdo das amostras, pois como variancia x volume= constante (Rossi
e Deutsch, 2014) e como regularizagdo aumentou o volume das amostras, consequentemente o
valor da variancia deve diminuir. Também se observa que as médias das variaveis Al,Ose P
diminuiram, este fato esta relacionado com a média ponderada usada para regularizacao das
amostras, que tende a minimizar os valores extremos, ou seja, valores muito baixos ou altos.
Porém, a mudanca nos valores das médias, foi considerada pequena, o que indica que
amostragem € representativa do dominio. Analisando os histogramas, percebe-se que ndo houve
mudanca no tipo de distribuicdo das variaveis, reforcando que a amostragem é representativa do
dominio. Mediante ao exposto, conclui-se que a regularizagdo das amostras foi realizada de modo

adequado.
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Figura 13- Histogramas dos dados amostrados depois da regularizacdo das amostras para as variaveis Fe (A), Al2O3
(B) e P (C).

6.4. Transformacéo dos dados

Para que seja feita a simulagéo por bandas rotativas, é necessério transformar os dados
para distribuicdo gaussiana padrado, ou seja, distribuicdo com média igual a zero e variancia igual
aum.

A transformacao dos dados foi realizada atraveés da fungdo anamorfose gaussiana, sendo
gue para cada variavel foram considerados numeros distintos de polinbmios com a finalidade de
definir o melhor ajuste (a distribuicdo acumulada dos dados).

O ajuste da funcdo anamorfose gaussiana na distribuicdo acumulativa de cada variavel,
pode ser observado na Figura 14, onde a curva magenta correspondente aos polinébmios de

Hermite que precisam ser ajustados a curva preta para que ocorra a transformacédo dos dados. A
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fungdo que descreve a nova distribuicdo da varidvel € representada pela curva azul e a
distribuicdo cumulativa original da variavel pela curva preta.

A variavel Fe precisou de 96 polinbmios de Hermite para que ocorresse a transformacao
dos dados, a Al.O. de 86 polindmios e o P de 71 polinémios.

Os histogramas das novas distribuices podem ser observados na Figura 15 (A,Be C) e
as estatisticas descritivas na Tabela 3. Destaca-se que as novas distribuicdes, como esperado,

apresentam média igual a zero e desvio padrao igual a 1.

Tabela 3- Estatistica descritivas dos dados das variaveis Fe, Al203 e P transformados.

Variavel Numero de Amostras Minimo  Maximo Média Desvio Padrao
Fe 332 -3,11 3,11 0
Al203 332 -3,16 3,16 0
P 330 -3,06 3,06 0
Valores Gaussianos Valores Gaussianos
-1 0 1 -4 -3 -1 0 1
A ) ) ) ) 4|8 Ja
70 b 4 70
3 F d 3
60 | 460 2} 12
1} 11
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Figura 14-Ajuste da fungdo anamorfose gaussiana na distribuicdo cumulativa para que ocorra a transformacao dos

dados as variaveis Fe (A), Al.O.(B) e P (C).
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Figura 15-Histogramas dos dados transformados para uma distribuicdo gaussiana da variavel Fe (A), A.O:(B) e P

(©).

6.5. Teste de Bigaussianidade
Para averiguar se os dados transformados correspondem a dados bigaussianos, foi
realizado o teste de bigaussianidade pela construcéo de diagramas de dispersédo de Z(x) versus

Z(x+h) para os dados transformados, como pode ser observado na Figura 16.
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Figura 16- Teste de biguassianidade dos dados atraves graficos de dispersdo Z(x) versus Z(x+h) para a variavel Fe
(A), Al203 (B) e P (C) com dados transformados.

Como as nuvens de dispersdo ndo se alinham a uma reta pode-se considerar que, as
varidveis x e x+h s@o independentes entre si, desta forma confirma-se a hip6tese de

bigaussianidade dos dados.

6.6. Analise Geoestatistica

Realizou-se a andlise exploratdria para cada variavel, isto é, calculou-se o variograma
experimental para as dire¢cées 0°/0°, 45°/0°, 90°/0°, 135°/0° e 0°/90° com objetivo de identificar
se os dominios analisados apresentavam anisotropia. Na tabela 4, apresenta os parametros

utilizados para o calculo do variograma experimental.

24



Tabela 4- Parametros utilizados no calculo dos variogramas experimentais.

~ Direcao
Parametros
0°/0° 45°/0° 90°/0° 135°/0° 0°/90°

Campo Geométrico 1308 500 850 1300 150
Tolerancia Angular 22,5° 22,5° 22,5° 22,5° 20°
Tamanho do Passo 100 100 100 150 13
Ndmero de Passo 13 5 8 8 11
Tolerancia do Passo 50% 50% 50% 50% 50%

A Figura 17 corresponde aos variogramas experimentais da analise exploratoria.
Analisando a Figura 17, percebe-se que na direcdo de 135°/0° apresenta variograma melhor
estruturado para as variaveis Fe, Al,Os e P em relacdo as outras dire¢cdes, porém o variograma
para esta dire¢cdo em todos os dominios apresenta valor alto de efeito pepita, porém sera utilizado
o efeito pepita obtido no variograma da vertical como representativo do dominio. O campo
geométrico das diregcBes 0°/0° e 90°/0° € pequeno 0 que comprometeu a estruturacao do
variograma experimental. O variograma na direcao de 45°/0° é estruturado para a variavel do P,
porém o Fe e para a Al,O3; ndo é tdo bem estruturado, apesar disso, como na direcao 135°/0° o
variograma experimental é bem estruturado o modelo tedérico de variograma foi ajustado para o
par coplanar 45°/0° e 135°/0° mais a ortogonal ndo coplanar (0°/90°). Interpretou-se a anisotropia
mista para todas as variaveis.
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Figura 17- Analise exploratéria para as variaveis Fe (A), Al203(B) e P (C).

Para realizar o ajuste do modelo tedrico de variograma, foram calculados os variogramas
experimentais somente nas direcbes que definem a elipse de anisotropia, com 0s mesmos
parametros utilizados na Tabela 4, porém alterando a tolerancia angular para 45° nas direcdes
de 45°/0°e 135°/0°.

Cabe destacar, que a elipse que representa anisotropia possui seu eixo maior na direcao
135°/0°, o eixo médio na direcdo 45°/0° e 0 seu eixo menor na dire¢cdo 0°/90°. Para a correcao
da anisotropia sera necessario rotacionar o sistema de eixos para dire¢do de maior continuidade
espacial, que no caso € a dire¢do de 135°/0°.

Os parametros utilizados para o ajuste para a variavel Fe apresentam-se na Tabela 5,
para a variavel Al,O3; na Tabela 6 e para a varidvel P na Tabela 7, mostra-se na Figura 18 o

variograma experimental com o modelo ajustado.
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Pode-se observar no Anexo 2 o ajuste realizado para cada variavel individualmente por
direcéo.

Tabela 5- Modelo Teérico de variograma para a variaveis Fe.

Fe
Efeito Pepita= 0,05
Amplitude  Amplitude  Amplitude Variancia Modelo Direcdo de
Estrutura U (m) V(m) W (m) Espacial Rotacédo
1°Estrutura 290 150 77 0,95 Esférico 135°/0°
2°Estrutura 500 - - 0,05 Esférico 135°/0°

Tabela 6- Modelo Teérico de variograma para a variaveis Al2Oa.

Al,0O3
Efeito Pepita= 0,05
Amplitude  Amplitude  Amplitude Variancia Modelo Direcédo de
Estrutura U (m) V(m) W (m) Espacial Rotacao
1°Estrutura 415 350 100 1 Esférico 135°/0°
2°Estrutura - 350 100 0,16 Esférico 135°/0°
3°Estrutura - - 100 0,05 Esférico 135°/0°

Tabela 7- Modelo Teérico de variograma para a variaveis P.

P
Efeito Pepita= 0,05
Amplitude  Amplitude  Amplitude Variancia Modelo Direcdo de
Estrutura U (m) V(m) W (m) Espacial Rotacédo
1°Estrutura 263 164 82 0,97 Esférico 135°/0°
2°Estrutura - 164 - 0,12 Esférico 135°/0°
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Figura 18- Modelo tedrico de variograma para variaveis Fe (A), Al20z3 (B) e P (C).

6.6.1. Validacdo Cruzada

Foi necessario realizar a validagéo cruzada para determinar os melhores parametros de
vizinhanca para simulagéo.

Foram testadas algumas vizinhangas diferentes, e o critério para escolher o melhor
conjunto de parametros foi baseado na quantidade de amostras estimadas e no coeficiente de
correlagdo entre os dados estimados e 0os amostrais. Os cenarios gerados na validagéo cruzada
para a varidvel Fe encontram-se na Tabela 6A, para a variavel Al,Os na Tabela 6B e do P na
Tabela 6C os parametros escolhidos estdo destacados nas tabelas em azul. Vale ressaltar que

para todos os cenarios o elipséide de busca foi rotacionado de acordo com a elipse de anisotropia.
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Tabela 6-Validagéo cruzada para a variavel Fe. Os melhores pardmetros estédo destacados em azul.

Relp Ge Buses QMui:?r::adie ssetor| Quantidadede Divisdo] ,\ | ,cp
V) \'} W amostras por setor | de Z
Amostras
500 150 77 4 4 2 Nao 330 0,769
500 150 77 4 4 2 Sim 330 0,779
500 150 77 4 8 2 Sim 330 0,778
500 150 77 4 8 2 Nao 330 0,768
500 150 77 4 4 1 Sim 331 0,781
| s 150 77 4 8 1 Sm 331 078

290 150 77 3 8 2 Sim 330 0,785
290 150 77 4 8 1 Sim 329 0,782

*Setor corresponde a quantidade de setores, podendo ser em quadrante ou octante, N. corresponde a quantidade de
amostras utilizadas e C.R corresponde ao coeficiente de correlacéo.

Tabela 7- Validag&o cruzada para a varidvel Al20s. Os melhores pardmetros estdo destacados em azul.

Raio de Busca Quantidade . A
Minima de *Setor opEwiEEeB el DIvESe *N. *C.R

V) \' W amostras por setor | de Z

Amostras

400 210 83 4 4 3 N3o 332 0,803
400 210 83 4 4 2 Sim 332 0,798
400 210 83 4 8 2 Sim 332 0,800
400 210 83 4 8 2 N3o 332 0,801

400 210 83 4 4 1 Nao 332 0,787
400 210 83 3 4 2 Nao 332 0,804
300 200 70 4 4 2 Nao 331 0,803

*Setor corresponde a quantidade de setores, podendo ser em quadrante ou octante, N. corresponde a quantidade de
amostras utilizadas e C.R corresponde ao coeficiente de correlacao.

Tabela 8- Validagdo cruzada para a variavel P. Os melhores parametros estdo destacados em azul.

Raio deBusca (I:\lllui:?r::?jie *Setor Quantidade de | Divisdao N *C.R
U \' W amostras por setor | de Z
Amostras
263 164 82 4 4 2 Nao 329 0,813
263 164 82 4 4 2 Sim 329 0,818
263 164 82 4 8 2 Sim 329 0,816
263 164 82 4 8 2 Nao 329 0,814
263 164 82 4 4 1 Sim 329 0,816
| 263 14 8 3 4 2 sm 330 0819

263 164 82 3 4 1 Sim 330 0,818
200 164 65 3 4 2 Sim 321 0,811

*Setor corresponde a quantidade de setores, podendo ser em quadrante ou octante, N. corresponde a quantidade de
amostras utilizadas e C.R corresponde ao coeficiente de correlacao.
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6.7. Simulacdo por Bandas Rotativas

Com os parametros de vizinhanca definidos, a simulacdo por bandas rotativas foi
realizada, inicialmente foi proposto realizar a simulacdo sequencial gaussiana, porém guando
namero de pontos simulados € maior que 1000 o variograma da simulacdo nado € igual ao
variograma amostral (Chilés e Delfiner, 1999), entdo optou-se por realizar a simulacao por bandas
rotativas com 1200 bandas, sendo gerados 100 cenarios para cada variavel analisada.

A simulacado por bandas rotativas foi realizada por bloco, ou seja, quando o bloco a ser
simulado é dividido em sub-blocos e o ponto simulado corresponde & média dos pontos amostrais
de cada sub-bloco (Yamamoto, 2001), sendo que a bloco foi dividido por 2x2x1 (eixo x e y foi
dividido em 2 subbocos e o eixo z ndo foi divido). Vale ressaltar, que a simulagéo foi realizada
dentro da fronteira convexa, que corresponde ao um poligono convexo com menor quantidade
de vértices que engloba os dados amostrais (Everitt, 2002).

Para verificar a ergodicidade dos variogramas das simulacdes realizadas, foi necessario
realizar o ajuste do modelo tedrico de variograma dos dados originais para cada variavel, sendo
que os parametros utilizados no ajuste sdo apresentados no anexo 3, e os modelos ajustados
sdo mostrado no Anexo 4. Ja o teste de ergodicidade esta na Figura 19 da variavel Fe, na Figura
20 da variavel Al.O. e na Figura 21 da variavel P.
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Figura 19- Teste de ergodicidade do variograma para a variavel Fe nas direcdes de 45°/0° (A), 135°/0° (B) e 0°/90°
©.
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Figura 20- Teste de ergodicidade do variograma para a variavel Alz0s nas dire¢des de 45°/0° (A), 135°/0° (B) e

0°/90° (C).
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Figura 21- Teste de ergodicidade do variograma para a variavel P nas dire¢des de 45°/0° (A), 135°/0° (B) e 0°/90°
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Analisando o teste de ergodicidade, para a variavel ferro percebe-se que o variograma
dos dados amostrais apresenta maior patamar e amplitude em relacdo aos variogramas dos
cenarios gerados, ou seja, os dados amostrais apresentam maior variancia e continuidade
espacial em relacdo aos cenarios simulados, conclui-se que os variogramas dos dados simulados
nao é ergodico ao variograma amostral. Para a variavel Al,Os, o variograma dos dados amostrais
apresenta menor patamar em relacdo a média das realiza¢des da simulacdo, para as direcdes
de 45°/0° e 0°/90° o variograma dos dados amostrais apresenta menor amplitude do que a média
das realizacfes, somente na direcdo 135°/0° o variograma dos dados amostrais apresenta maior
amplitude, somente nesta direcdo o variograma dos dados amostrais esta mais proximo a média
das realizac6es das simulacdes. Para a variavel P, o variograma dos dados amostrais apresenta
maior patamar e amplitude em relagdo aos variogramas das realizagfes, os dados amostrais
apresentam maior variancia e continuidade espacial em relacao aos cenarios simulados, entdo

conclui-se que a média das realiza¢des nao é representativa aos dados amostrais.

6.8. Classificagdo de Recurso

Para realizar a classificagédo de recurso de ferro na Mina de Capanema, foi necessario a
quantificagé@o da incerteza de cada bloco simulado dos 100 cenarios gerados. Esta quantificagéo
foi realizada por meio do intervalo de confianga da meédia parametrizado pela média de cada
bloco.

Foi necessario calcular o desvio padrdao e a média de cada bloco simulado, assim como
também o valor do parametro t que para n igual a 100 cenarios corresponde a 1,66. As incertezas
dos blocos para cada variavel foram calculadas, sendo que para o Ferro a incerteza dos blocos
variam de 0,14 % a 2,78%, ja para o fosforo varia de 1,52% a 9,25% e para a alumina varia de
3,06% a 19,60%, estes resultados refletem a variabilidade de cada variavel, ou seja, o ferro por
ser menos heterogéneo com uma distribuicdo assimétrica negativa apresentou incerteza menor
para os blocos simulados, o fosforo por apresentar maior variabilidade que o ferro e menor que a
alumina, apresentou uma incerteza maior que o ferro e menor que a alumina, e, por fim, a
alumina que apresenta alta variabilidade com a presenca de maior quantidade de outliers em
relacdo as outras variaveis, apresentou as maiores incertezas.

A classificagdo de recursos da mina foi baseada na incerteza do ferro e dos
contaminantes, fosforo e alumina. Foi proposto inicialmente, fazer uma sele¢éo dos blocos que
possuissem teor superior ao teor de corte do ferro e inferior aos teores limites dos contaminantes
para depois realizar a classificacdo, porém esta selecdo ao considerar os teores de corte
consideraria um fator modificador para classificacdo de recurso, 0 que nao ocorre na

classificagcdo de recurso, mas sim de reserva, por isso a classificagdo ndo utilizou esses critérios.
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A classificacdo dos blocos simulados foi realizada conforme:

e Recurso Inferido quando pelo menos uma das variaveis apresentou incerteza superior a

30%.

e Recurso Indicado quando pelo menos uma das variaveis apresentou incerteza entre 15%

a 30%.

e Recurso Medido quando as trés variaveis apresentaram incerteza inferior a 15%.

Cabe destacar, que os critérios usados para a classificacdo de recurso foram baseados e
adaptados de Rossi e Deutsch (2014).

Com a classificacdo dos blocos, obteve-se 7429 blocos classificados como medido,
conforme apresentados nas Figura 22 e 23, e 539 blocos classificados como indicado (Figura 24
e 25), nenhum bloco foi classificado como inferido. Analisando as Figuras 24 e 25, percebe-se
que os blocos indicados estdo na borda do corpo, o que pode estar relacionado com a menor
quantidade de amostras nestas regiées gerando maior incerteza maior, ja os blocos medidos
estdo concentrados na por¢cao central do corpo justamente na regido com maior amostragem e

consequentemente menor incerteza.

#3.75 44 4425 445 4475 45 4525

4375 44 4425 445 4475 45 4525 Iatis - 30 Viewsr
Figura 22- Localizagdo em planta dos blocos classificados como recurso medido.
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Figura 24- Localizagdo em planta dos blocos classificados como recurso indicado.
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Figura 25- Localizagao dos blocos classificados como recurso indicado representado em visada obliqua.

Inicialmente, foi proposto realizar o célculo de recurso da mina de Capanema, através da
equacdo R=VDT, sendo o V correspondente ao volume de cada bloco, D correspondente a
densidade e T correspondente ao teor médio do ferro (Yamamoto e Rocha, 2001), porém optou-
se realizar a curva de teor de corte x metal contido para cada tipo de recurso para analisar a
guantidade de metal contido em relacdo a diferentes teores de corte ferro da mina.

Para obter esta curva, é necessario obter a quantidade de metal contido para
determinados teores de corte, através da equagdo R=VDT, onde T corresponde ao teor de corte,
d corresponde a densidade média do minério da Mina de Capanema, sendo seu valor igual a
2,73 g/cm? (valor obtido através da média do minério encontrado em Rocha (1999)), também foi
necessario o volume de cada bloco que corresponde a 32 500 m3. A Figura 26 mostra a curva

de teor x tonelagem para recurso medido (A) e recurso indicado (B).
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Figura 26- Curvas de teor x tonelagem para recurso medido (A) e indicado (B).

Analisando a Figura 26, percebe-se que a curva do recurso medido é mais suave que do
recurso indicado, mostrando que o recurso medido apresenta teores maior dispersdo de teores
do que o recurso indicado, assim como apresenta também maior tonelagem. Também pode ser
observado, na Figura 20, que a curva de teor x tonelagem do recurso medido apresentou maior
decréscimo de tonelagem entre os teores de ferro igual 55 a 60, e que o recurso medido apresenta
teor minimo de 43 e o teor maximo de 64, ja o recurso indicado apresenta uma curva com
inclinacdo acentuada entre teores de ferro de 55 a 59, ou seja, maior decréscimo de tonelagem

entres estes teores, o recurso indicado apresenta teor minimo igual 43 e o teor maximo de 59.

7. CONCLUSOES
O uso do intervalo de confianca da média para a quantificacdo da incerteza para a
classificagcdo de recursos seria indicado para depositos com média a alta variabilidade, ou seja,
para recurso que apresentam distribuicdo assimétrica positiva com grande presenga de outliers
e com alto coeficiente de variacdo. Esta conclusao esta relacionada com os resultados obtidos
das incertezas das variaveis analisadas nesta monografia, visto que a varidvel menos
heterogénea apresentou pequena incerteza e a variavel mais heterogénea apresentou maior
incerteza doF que as outras variaveis e somente por causa desta incerteza maior foi possivel
classificar blocos como indicados, assim pode-se concluir que o nivel de incerteza calculado pelo
intervalo de confianga da média esta diretamente relacionado com a variabilidade da variavel.
Mediante ao exposto, depdésitos homogéneos e bem amostrados (amostras sao
representativas do depdsito), como no caso da Mina de Capanema, ndo é aconselhavel que se
use incerteza quantificada através do intervalo de confianca da média para a classificacdo de
recurso visto que 93% dos blocos da Mina de Capanema foram classificados como recurso

medido, tal fato ndo é factivel, pois espera-se que nas bordas de um depdésito e lugares onde a
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amostragem ndo seja tao representativa tenha a presenca de blocos classificados como indicado
e inferido. Conclui-se que este parametro ndo € o mais indicado para classificar recursos minerais
e, deste modo um critério mais adequado deve ser assumido, como por exemplo a quantidade e
distancia de amostras no entorno dos blocos classificados, ou ainda a proporcédo da amplitude do
variograma para definir as diferentes classes de recursos minerais, isto €, presenca de ao menos
uma amostra a uma distancia de até 1/3 da amplitude o recurso sera medido, de 1/3 a 1 amplitude
0 recurso € indicado e acima de 1 amplitude o recurso € inferido. Assim, cabe ao profissional
qualificado decidir o melhor método para ser utilizado visto que nenhum guia de classificacao

determina o método a ser utilizado.
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ANEXO

Anexo 1

Definicdo da terminologia utilizada nos sistemas de classificacdo de recursos e reservas
de acordo com a CBRR (2016):

Recurso Mineral € uma concentracdo ou ocorréncia de material sélido de interesse
econdmico dentro ou na superficie da crosta terrestre onde forma, teor ou qualidade e
quantidade apresentem perspectivas razoaveis de extracdo econdmica.

Recurso Mineral Inferido é aquela parte de um Recurso Mineral para o qual a quantidade
e o teor ou a qualidade sédo estimados com base em evidéncias geoldgicas e amostragem
limitadas. Evidéncias geoldgicas séo suficientes para sugerir, mas ndo para atestar a
continuidade geol6gicas e o teor ou qualidade. Recurso Inferido tem um nivel de
confiabilidade mais baixo do que aquele que se aplica a um_Recurso Mineral Indicado e
ndo deve ser convertido para Reserva Mineral. E razoavel esperar que a maioria dos
Recursos Minerais Inferidos possa ser convertida em Recursos Minerais Indicados com a
continuidade da exploragéo.

Recurso Mineral Indicado é a parte de um Recurso Mineral para o qual a quantidade, o
teor ou qualidade, a densidade, a forma e as caracteristicas fisicas sdo estimadas com
confiabilidade suficiente para permitir a aplicacdo de Fatores Modificadores em detalhe
suficiente para embasar o planejamento de mina e a avaliagéo da viabilidade econémica
do depdsito. Evidéncias geoldgicas séo derivadas de exploragdo, amostragem e testes
com detalhamento adequado e sé@o confidveis e suficientes para assumir a continuidade
geoldgica e o teor ou qualidade entre os pontos de observacgdes. Recurso Mineral Indicado
tem um nivel mais baixo de confiabilidade do que o aplicado a um Recurso Mineral Medido
e pode ser convertido apenas em Reserva Mineral Provavel.

Recurso Mineral Medido é a parte de um Recurso Mineral para a qual a quantidade, o teor
ou qualidade, as densidades, as formas e as caracteristicas fisicas sdo estimadas com
confianga o suficiente que permitam a aplicacdo dos Fatores Modificadores para embasar
o planejamento de mina detalhado e uma avaliagdo final de viabilidade econémico do
deposito. Evidéncias geolégicas sao derivadas de exploracdo, amostragem e testes
detalhados e confidveis séo suficientes para confirmar a continuidade geolégica e o teor
ou qualidade entre os pontos de observagdes. Recurso Mineral Medido tem um nivel mais
alto de confiabilidade do que aquele aplicado tanto a um Recurso Mineral Indicado quanto
a um Recurso Mineral Inferido. Ele pode ser convertido em Reserva Mineral Provada ou
em Reserva Mineral Provavel.
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Anexo 2

Modelo tedrico de Variograma para variavel Ferro
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Figura Al- Modelo teérico de variograma para os dados gaussianos da variavel ferro para a direcdo de 45°/0°

(A), 135°/0° (B) e 0°/90° (C).

3817 3817 2044

0.75
Fe
0.50
0.25
0.00 0.00
o 250 500 750 1000 1250
Disténcia
50 100 150
1.25
68
A
1.00
0.75
0.50
0.25
0.00

50 100

Distancia

150
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Figura A2- Modelo teérico de variograma para os dados gaussianos da variavel alumina para a direcdo de 45°/0°

(A), 135°/0° (B) e 0°/90° (C).
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Anexo 2
Modelo tedrico de Variograma para a variavel fosforo
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Figura A3-Modelo tedrico de variograma para os dados gaussianos da variavel fosforo para a dire¢do de 45°/0°
(A), 135°/0° (B) e 0°/90° (C).
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Anexo 3

Tabela Al- Modelo Teérico de variograma para dados amostrais das variaveis Fe, Al.O, e P.

Fe
Efeito
Pepita 0,05
Amplitude  Amplitude  Amplitude Variénpia Modelo Direcdo de
Estrutura U (m) V (m) W (m) Espacial Rotacédo
1°Estrutura 400 190 90 62,5 Esférico 135°/0°
2°Estrutura - - 90 4 Esférico 135°/0°
A|203
Efeito
Pepita 0,05
Amplitude  Amplitude  Amplitude Varién(_:ia Modelo Direcédo de
Estrutura U (m) V (m) W (m) Espacial Rotacao
1°Estrutura 420 120 50 15 Esférico 135°/0°
2°Estrutura 620 120 - 0,6 Esférico 135°/0°
3°Estrutura 620 - - 0,45 Esférico 135°/0°
P
Efeito
Pepita 0,05
Amplitude  Amplitude  Amplitude Varién(_:ia Modelo Direcédo de
Estrutura U (m) V (m) W (m) Espacial Rotacao
1°Estrutura 300 207 100 0,0014 Esférico 135°/0°
2°Estrutura - 207 - 0,00015 Esférico 135°/0°
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Anexo 4

Modelo tedrico de Variograma para dados amostrais da variavel Ferro
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Figura A4-Modelo tedrico de variograma dos dados amostrais da varidvel Fe (D) para a direcdo de 45°/0°

(A), 135°/0° (B), 0°/90° (C).

Modelo tedrico de Variograma para dados amostrais da variavel Alumina
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Figura A5-Modelo tedrico de variograma dos dados amostrais da variavel Al203 (D) para a dire¢édo de 45°/0°

(A), 135°/0° (B), 0°/90° (C).
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Modelo tedrico de Variograma para dados amostrais da variavel fosforo

Figura A6-Modelo tedrico de variograma dos dados amostrais da variavel P (D) para a dire¢édo de 45°/0° (A), 135°/0°

(B), 0°/90° (C).
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